
This document provides a complete guide to understanding data structures and
algorithms in computer science. It contains a collection of information compiled by
people who have successfully completed interviews at FAANG companies as well
as a useful information, tips, graphics, etc. to help better understand the subject
matter and be a better coder or to ace that interview.

This guide is provided to you with the mission of making the world’s resources
more accessible to all.

Enjoy!

Complete Data structures and
Algorithms Guide

Resources, Notes, Videos, Solutions 2022UPDATED
Resources, Notes, Videos, Solutions

20232023

2

Table of Contents
The document is divided as follows.
Table of Contents………………………………………………………………………………………………….………………………..………………2
Complete Data structures and Algorithms Roadmap ...3

Our Aim..3
Practice...3

Arrays ... 4
Introduction ... 4
Hash maps, tables ..4

2 Pointers ... 5
Linked List...9
Sliding Window ..13
Binary Search ... 18
Recursion..25
Backtracking...32
BFS, DFS..40
Dynamic Programming .. 52
Trees...63
Graphs ..70
Topological Sorting .. 81
Greedy Algorithms...85
Priority Queue..88
Tries..93
Additional Topics ... 96

Kadane’s algorithm...96
Djikstra’s algorithm..97
AVL Trees..98
Sorting..99
More...99

Additional Awesomeness .. 99

DSArevision.com

3

Complete Data structures and Algorithms
Roadmap

Resources, Notes, Questions, Solutions
We’ve covered all the amazing data structures and algorithms that you will ever need to study to
get that next opportunity. Hopefully, this will make you a better problem solver, a better
developer, and help you ace your next technical coding interviews. If you have any questions
along the way, feel free to reach out to us on 0xblocktrain@gmail.com.

Our Aim
- Our aim is to help you become a better problem solver by gaining knowledge of different

data structures, algorithms, and patterns
- We want you to understand the concepts, visualize what’s going on, and only then move

forward with more questions
- Most phone interviews require you to be a good communicator and explain your

approach even before you write the solution. So it’s important to understand the core
concepts and then work on extra stuff.

⭐ ⭐ ⭐ There are thousands of questions which you can solve out there, but computer science
and coding is much more than just doing data structures. Building and developing something
is the core of computer science, so if you’re actually interested - then most of your time should
go in learning new frameworks and building stuff. Another important aspect of coding and life in
general is to explore! The more you explore -> the closer you get to your interests, so keep
exploring and learning. Good luck!

Practice
- Practicing 150-200 questions will make you confident enough to approach any new

problem. This is just solving only 2 questions for 75 days, which is not a lot if you think
about it!

- Being consistent is the key. Finish this guide in 75-90 days. Don’t rush it from today, take
your time, revisit topics after a while, read and watch a lot of videos, and eventually be
comfortable with problem solving!

DSArevision.com

mailto:30dayscoding@gmail.com

4

- Enjoy the process and start today. I’m sure you’ll do great. Have fun.

Arrays
Introduction
⭐ Informally, an array is a list of things. It doesn’t matter what the things are; they can be
numbers, words, apple trees, or other arrays. Each thing in an array is called an item or
element. Usually, arrays are enclosed in brackets with each item separated by commas, like
this: [1, 2, 3]. The elements of [1, 2, 3] are 1, 2, and 3.

- Introduction to Arrays
- https://www.cs.cmu.edu/~15122/handouts/03-arrays.pdf
- An Overview of Arrays and Memory (Data Structures & Algorithms #2)
- What is an Array? - Processing Tutorial

Arrays are used with all different types of data structures to solve different problems, so it’s kind
of hard to come up with array questions with just an array logic. Let’s discuss some of the most
famous patterns which concern arrays most of the time.

2D matrices are also arrays and are very commonly asked in interviews. A lot of graph, DP, and
search based questions involve the use of a 2D matrix and it’s important to understand the core
concepts there. We’ve discussed the common patterns in each section below so make sure to
check that out.

Hash maps, tables
⭐ A hash table is a data structure that implements an associative array abstract data type, a
structure that can map keys to values. In other words, we can store anything in the form of key
value pairs.
Example: map<string, string>, means that this is a hashmap where we store string key and
value pairs.

DSArevision.com

https://www.geeksforgeeks.org/introduction-to-arrays/
https://www.cs.cmu.edu/~15122/handouts/03-arrays.pdf
https://www.youtube.com/watch?v=pmN9ExDf3yQ
https://www.youtube.com/watch?v=NptnmWvkbTw

5

Resources
- Hashmap and Map Powerful Guide
- Data Structure and Algorithms - Hash Table
- Leetcode discuss: Hashtable implementation

Questions
- 1. Two Sum
- 771. Jewels and Stones
- Leetcode : How Many Numbers Are Smaller Than the Current Number
- Partition Labels

2 Pointers
⭐ For questions where we’re trying to find a subset, set of elements, or something in a sorted
array -> 2 pointers approach is super useful.

DSArevision.com

https://leetcode.com/discuss/study-guide/1068545/HASH-TABLE-and-MAP-POWERFUL-GUIDE-
https://www.tutorialspoint.com/data_structures_algorithms/hash_data_structure.htm
https://leetcode.com/problems/design-hashmap/discuss/?currentPage=1&orderBy=most_votes&query=
https://leetcode.com/problems/two-sum/
https://leetcode.com/problems/jewels-and-stones/
https://leetcode.com/problems/how-many-numbers-are-smaller-than-the-current-number/
https://leetcode.com/problems/partition-labels/

6

Some common questions with this approach are concerned with splitting something or finding
something in the middle, eg: middle element of the linked list. This is something which you’ll
recognize instantly after solving some questions on it, so just try to see the template and start
solving.

Here’s a general code template for solving a 2 pointer approach. We move from the left and
right with different conditions until there’s something we want to find.

/* General two pointer problem solution */
public boolean twoSumProblem(int A[], int N, int X)
{

// represents first pointer
int left = 0;
// represents second pointer
int right = N - 1;
while (left < right) {

// question condition match
if(){

// do something
return true

}
// first wrong condition
else if(){

// close in the array from left
left+=1;

}
// second wrong condition
else{

// close in the array from right
right-=1;

DSArevision.com

7

}
}
return false;

}

Problem 1: Remove duplicates
https://leetcode.com/problems/remove-duplicates-from-sorted-array/
⭐ We have a value given, and we have to remove the occurrences of ‘value’ in place. The array
is sorted and we have to return an integer (important information)
Damn, how do we do this? No clue.
Kidding, let’s discuss. One brute force way is to have a separate array, iterate over the original
array and then add the items other than value to the new array. Now just return the new array.
But we have to do this in place, so we can’t have an additional thing. How to do that?

Let’s start from the beginning, if the number is something other than the ‘value’, let’s just bring
that to the beginning? And then finally return the pointer.
Think of this -> we want to shift the elements behind if they don’t match the value given.

int removeElement(int A[], int elem) {
int pointer = 0;
for(int i=0; i<n; i++) {
if(A[i]!=elem) {

A[pointer++] = A[i];
}

}
return pointer;

}

Part II
What if we don’t have a value and just want to remove the duplicates and return the index.
We would still have 2 pointers, test if slow != fast -> move the slow pointer forward, and change
the nums[slow] to the fast one -> basically pushing that element back.

def removeDuplicates(self, nums: List[int]) -> int:

DSArevision.com

https://leetcode.com/problems/remove-duplicates-from-sorted-array/

8

if len(nums) ==0 : return 0
slow = 0
for fast in range(1,len(nums)):

if nums[slow] != nums[fast]:
slow += 1
nums[slow] = nums[fast]

return tail+1

Problem 2: Two Sum + Sorted
⭐ If we want to find 2 indices which sum up to a target and the array is sorted, we can start from
left and right with 2 pointers, and move them according to the sum at every time.
Eventually we will find the target from those 2 indices, or just return -1 if we don’t.

However, the logic would be more complex if the array is not sorted. We can simply store the
elements in a hashmap as we go, and eventually return when we find target-nums[i] in the array
as we’re going forward.

boolean pairSum(int A[], int N, int X)
{

int i = 0;
int j = N - 1;
while (i < j) {

if (A[i] + A[j] == X)
return true;

else if (A[i] + A[j] < X)
i++;

else
j--;

}
return false;

}

Read📚
- Article: 2 Pointer Technique

DSArevision.com

https://leetcode.com/articles/two-pointer-technique/

9

- Hands-on-Algorithmic-Problem-Solving: 2 Pointers

Videos🎥
- How to Use the Two Pointer Technique
- Two Pointer | Is Subsequence | LeetCode 392.

Questions🤔
- Middle of the Linked List
- 922. Sort Array By Parity II
- Reverse String
- Valid Palindrome
- E26. Remove Duplicates from Sorted Array
- 75. Sort Colors
- 11. Container With Most Water

Linked List
Introduction
⭐ Linked list is a data structure which stores objects in nodes in a snake-like structure. Instead
of an array (where we have a simple list to store something) we have nodes in the linked list. It’s
the same thing though, you can store whatever you want - objects, numbers, strings, etc.

The only difference is in the way it’s represented. It’s like a snake: with a head and tail, and you
can only access one thing at a time - giving its own advantages and disadvantages. So if you
want to access the 5th thing, you can’t do linked_list[5], instead -> you would have to iterate
over the list from the beginning and then stop when the number hits 5.

DSArevision.com

https://github.com/liyin2015/Algorithms-and-Coding-Interviews/blob/master/two_pointer.pdf
https://youtu.be/-gjxg6Pln50
https://youtu.be/RIa7SCyKTkQ
https://leetcode.com/problems/middle-of-the-linked-list/
https://leetcode.com/problems/sort-array-by-parity-ii/
https://leetcode.com/problems/reverse-string/
https://leetcode.com/problems/valid-palindrome/
https://leetcode.com/problems/remove-duplicates-from-sorted-array/
https://leetcode.com/problems/sort-colors/
https://leetcode.com/problems/container-with-most-water/

10

Problem 1: Linked list methods
Here’s how a linked list looks like: Linked list: Methods
We have the basic functions of insert, delete, search, etc which basically depend on 2 simple
conditions:

 We have to iterate to find the node
 And the only way we can go is forward: node.next

You might not see a Linked list ever in your life when you develop real things, but it’s still nice to
know something that exists. Along with that, there are certain questions based around linked
lists, so it’s important to understand those as well.

Problem 2: Linked List cycle
⭐ We want to find if there’s a cycle in a linked list. The first thing which comes to mind is -> how
the F do we do this. Just kidding -> it’s on the lines of -> maybe if we visit a node again, then we
would find a cycle
How can we find if we visited the node again? Maybe store the nodes as you’re iterating and
then see if you find the node in the set again.
Using a set:
public boolean hasCycle(ListNode head) {

Set<ListNode> set = new HashSet<>();
while(head!=null){

if(set.contains(head)){
return true;

}
set.add(head);
head=head.next;

DSArevision.com

https://gist.github.com/aryansingh12/aee29904dfaab092c79d8298c4a874ce

11

}
return false;

}

This solution is absolutely correct, but it requires you to have a separate set (space complexity),
can we do something better? Think of something on the lines of 2 pointers. Can we have a slow
and fast potiner where the fast tries to catch the slower one? If it can, we find a cycle, if not ->
there’s no cycle.
Using slow and fast pointers:
while(

head!=null && slow.next !=null
&& fast.next!=null && fast.next.next != null) {

slow = slow.next;
fast = fast.next.next;
if(slow == fast) return true;
head = head.next;

}

Even simpler:
while(runner.next!=null && runner.next.next!=null) {

walker = walker.next;
runner = runner.next.next;
if(walker==runner) return true;

}

Problem 3: Deleting a node
⭐ We can simply delete a node by moving the pointer from the previous node to the next node.
prev.next = node.next. The only simple catch is that we have to iterate to reach the ‘node’ and
there is no instance given to us.

Part II
What if we want to delete a node without the head? You cannot iterate to reach that node, you
just have the reference to that particular node itself.

DSArevision.com

BlockTrain.info

12

There’s a catch here -> we can’t delete the node itself, but change the value reference. So you
can change the next node’s value to the next one and delete the next one. Like this:
node.val = node.next.val;
node.next = node.next.next;

Problem 4: Merge sorted lists
Merge Two Sorted Lists
⭐ We have 2 sorted lists and we want to merge them into one.
Does sorting tell you something? The element at the head would be the smallest.
Can we compare the heads every time and add those to the new list?
Ooooo, maybe yeah. Let’s try comparing and then move the counter of the bigger element.
if l1.val < l2.val:

cur.next = l1
l1 = l1.next

Otherwise, we do this for the other node (because that’s smaller)
else:

cur.next = l2
l2 = l2.next

What do we do once a list is done and the other one is left? Simply move the new linked list to
the next pointer -> cur = cur.next and then add all the elements of the left over list.
cur.next = l1 or l2 # iterate over and add all the elements
return head (the temporary new list that we made)

Problem 5: Merge K Sorted lists:
Leetcode 23. Merge k Sorted Lists
⭐ We have k lists and we want to merge all of those into a big one.

1. One simple way would be to compare every 2 lists, call this function, and keep doing
until we have a bigger list. Any other shorter way?

2. We can be smart about it and add all the lists into one big array or list -> sort the array ->
then put the elements back in a new linked list!

https://leetcode.com/problems/merge-two-sorted-lists/
https://leetcode.com/problems/merge-k-sorted-lists/

BlockTrain.info

13

3. Or maybe we can use something called the priority Queue. We can add all the items to
the queue, take them out one by one and then store them in a new list. It will behave like
a normal queue or list, but save us a lot of time (complexity wise). Here’s more about it.
Here’s the priority queue solution: here.

Read📚
- Linked list: Methods
- How I Taught Myself Linked Lists. Breaking down the definition of linked list
- Introduction to Linked List

Videos🎥
- Data Structures: Linked Lists
- Interview Question: Nth-to-last Linked List Element

Questions🤔
- 141. Linked List Cycle (Leetcode)
- Delete Node in a Linked List"
- 19. Remove Nth Node From End of List
- Merge Two Sorted Lists
- Palindrome Linked List
- 141. Linked List Cycle (Leetcode)
- Intersection of Two Linked Lists
- Remove Linked List Elements
- Middle of the Linked List
- lc 23. Merge k Sorted Lists
-

Sliding Window
Introduction
⭐ This is super useful when you have questions regarding sub-strings and sub-sequences for
arrays and strings. Think of it as a window which slides to the right or left as we iterate through

https://gist.github.com/aryansingh12/fa88cb2e5ae83d0078a5d7076093e691
https://gist.github.com/aryansingh12/aee29904dfaab092c79d8298c4a874ce
https://towardsdatascience.com/how-i-taught-myself-linked-lists-72c4837ea721
http://www.cse.iitm.ac.in/~cs2110/Lab_3/LinkedListIntro.pdf
https://www.youtube.com/watch?v=njTh_OwMljA
https://www.youtube.com/watch?v=i7v1UWlaYrI&list=PLNmW52ef0uwsqn4haINljAFDivH1zhqxF
https://leetcode.com/problems/linked-list-cycle/
https://leetcode.com/problems/delete-node-in-a-linked-list/
https://leetcode.com/problems/remove-nth-node-from-end-of-list/
https://leetcode.com/problems/merge-two-sorted-lists/
https://leetcode.com/problems/palindrome-linked-list/
https://leetcode.com/problems/linked-list-cycle/
https://leetcode.com/problems/intersection-of-two-linked-lists/
https://leetcode.com/problems/remove-linked-list-elements/
https://leetcode.com/problems/middle-of-the-linked-list/
https://leetcode.com/problems/merge-k-sorted-lists/

BlockTrain.info

14

the string/array.

Sliding window is a 2 pointer problem where the front pointer explores the array and the back
pointer closes in on the window. Here’s an awesome visualization to understand it more:
Dynamic Programming - Sliding Window

Problem 1: Max sum for consecutive k
⭐ We have an array [1,2,3,2,4] and k=2, we want to return the max sum of the array with size 2.
Looking at this for the first time, I would think of a brute force way to calculate all the subarrays,
find their sum, store the maximum, and return it.
However, that’s very expensive. We don’t really need to explore all the subarrays. Or, we can
do that in an easier way (which is also cheaper): SLIDING WINDOW.

This is how sliding window would work here:
- We start with a window of ‘k’ from the left.
- We plan to move it to the right until the very end
- We remove the leftmost element (from the window) and add the right one as we move to

the left
- We store the sum for every window and then return the max at the very end.

Storing the sum
- You can either calculate the sum every time -> which will be expensive
- Or we can just find the sum of the window the first time

https://algorithm-visualizer.org/dynamic-programming/sliding-window

BlockTrain.info

15

- And then subtract the leftmost element and add the right element as we go, storing the
maximum sum till the end.

Here’s how the code looks.
int max_sum = 0;
int window_sum = 0;
/* calculate sum of 1st window */
for (int i = 0; i < k; i++) {

window_sum += arr[i];
}
/* Start the window from the left (k instead of 0)*/
for (int i = k; i < n; i++) {

window_sum += arr[i] - arr[i-k]; // remove the left and add the right
max_sum = max(max_sum, window_sum); // store the maximum

}
return max_sum;

⭐ A must need article which covers more about this topic: Leetcode Pattern 2 | Sliding Windows
for Strings | by csgator | Leetcode Patterns

Problem 2: Fruits into basket
904. Fruit Into Baskets
Super interesting problem, let’s learn something cool from it. This is a sliding window problem
where we want to keep the maximum of 2 unique fruits at a time.

- We begin with 2 pointers, start and end.
- We move the end pointer when we’re exploring stuff in the array -> this is the fast pointer

moving ahead.
- We move the start pointer only when we’re shrinking the window.

⭐ Think of this as expanding the window and shrinking it once we go out of bounds.

Now, how do we expand or shrink here? No clue to be honest, bye. Haha kidding, let’s do it.
We expand when we’re exploring, so pretty much always when we add an element to our
search horizon - we increase the end variable. Let’s take this step by step.

https://medium.com/leetcode-patterns/leetcode-pattern-2-sliding-windows-for-strings-e19af105316b?source=collection_home---6------3-----------------------
https://medium.com/leetcode-patterns/leetcode-pattern-2-sliding-windows-for-strings-e19af105316b?source=collection_home---6------3-----------------------
https://leetcode.com/problems/fruit-into-baskets/

BlockTrain.info

16

👉 We have 2 pointers, start/end, and a map -> we add elements with the ‘end’ pointer and
take out elements with the start pointer (shrinking)

while(end< tree.length){
int a = tree[end];
map.put(a, map.getOrDefault(a,0)+1);
if(map.get(a)==1)counter++;
end++;
something something

}

👉 Let’s take the end pointer till the array length, add the element to the map and then while
the number of unique fruits are more than 2, remove the element from the map

while(counter>2){
int temp = tree[start];
map.put(temp, map.get(temp)-1); # remove elem count
if(map.get(temp)==0)counter--; # decrease counter
start++; # increment start

}

Now, we want to store the maximum window size at all times -> after the second loop has exited
and we’re in the nice condition -> maximum 2 unique fruits. The conditions can be changed
here easily according to the number of unique fruits or min/max given to us.

Here’s the combined code:
public int totalFruit(int[] tree) {

Map<Integer, Integer> map = new HashMap<>();
int start=0, end=0, counter=0, len=0;
while(end< tree.length){

int a = tree[end];
map.put(a, map.getOrDefault(a,0)+1);
if(map.get(a)==1)counter++;
end++;
while(counter>2){

int temp = tree[start];

BlockTrain.info

17

map.put(temp, map.get(temp)-1);
if(map.get(temp)==0)counter--;
start++;

}
len = Math.max(len, end-start);

}
return len;

}

⭐ ⭐ ⭐ A must need article which covers more about this topic: Leetcode Pattern 2 | Sliding
Windows for Strings | by csgator | Leetcode Patterns

Read📚
- Leetcode Pattern 2 | Sliding Windows for Strings | by csgator | Leetcode Patterns
- Sliding Window algorithm template to solve all the Leetcode substring search problems

Videos🎥
- Sliding Window Technique + 4 Questions - Algorithms
- Sliding Window Algorithm - Longest Substring Without Repeating Characters (LeetCode)
- Minimum Window Substring: Utilizing Two Pointers & Tracking Character Mappings With

A Hashtable

Questions🤔
- Maximum Average Subarray I
- 219. Contains Duplicate II
- 904. Fruit Into Baskets
- 1004. Max Consecutive Ones III
- 76. Minimum Window Substring
- 239. Sliding Window Maximum

https://medium.com/leetcode-patterns/leetcode-pattern-2-sliding-windows-for-strings-e19af105316b?source=collection_home---6------3-----------------------
https://medium.com/leetcode-patterns/leetcode-pattern-2-sliding-windows-for-strings-e19af105316b?source=collection_home---6------3-----------------------
https://medium.com/leetcode-patterns/leetcode-pattern-2-sliding-windows-for-strings-e19af105316b?source=collection_home---6------3-----------------------
https://leetcode.com/problems/find-all-anagrams-in-a-string/discuss/92007/sliding-window-algorithm-template-to-solve-all-the-leetcode-substring-search-problem
https://youtu.be/jM2dhDPYMQM
https://youtu.be/4i6-9IzQHwo
https://youtu.be/eS6PZLjoaq8
https://youtu.be/eS6PZLjoaq8
https://leetcode.com/problems/maximum-average-subarray-i/
https://leetcode.com/problems/contains-duplicate-ii/
https://leetcode.com/problems/fruit-into-baskets/
https://leetcode.com/problems/max-consecutive-ones-iii/
https://leetcode.com/problems/minimum-window-substring/
https://leetcode.com/problems/sliding-window-maximum/

BlockTrain.info

18

Binary Search
Introduction
⭐ We use binary search to optimize our search time complexity when the array is sorted (min,
max) and has a definite space. It has some really useful implementations, with some of the top
companies still asking questions from this domain.

The concept is: if the array is sorted, then finding an element shouldn’t require us to iterate over
every element where the cost is O(N). We can skip some elements and find the element in
O(logn) time.

Algorithm
⭐ We start with 2 pointers by keeping a low and high -> finding the mid and then comparing that
with the number we want to find. If the target number is bigger, we move right -> as we know
the array is sorted. If it’s smaller, we move left because it can’t be on the right side, where all
the numbers are bigger than the mid value.

Here’s an iterative way to write the Binary search algorithm:
int left = 0, right = A.length - 1;
// loop till the search space is exhausted
while (left <= right)
{

BlockTrain.info

19

// find the mid-value in the search space and
// compares it with the target
int mid = (left + right) / 2;
// overflow can happen. Use:
// int mid = left + (right - left) / 2;
// int mid = right - (right - left) / 2;
// key is found
if (x == A[mid]) {

return mid;
}
// discard all elements in the right search space,
// including the middle element
else if (x < A[mid]) {

right = mid - 1;
}
// discard all elements in the left search space,
// including the middle element
else {

left = mid + 1;
}

}

Here’s a beautiful visualization to understand it even more: Branch and Bound - Binary Search

Let’s understand the recursive solution now: we call the function for the left side and right side if
the mid doesn’t match our target. We can either change the left/right pointers through the
arguments or through cases -> arguments looks like an easier way. If we want to move to the
right, we change the left pointer to mid+1, and if we wanna go left, we change the right pointer
to mid-1.
binarySearch(arr, l, mid - 1, x)
binarySearch(arr, mid + 1, r, x)

Here’s the whole thing:
def binarySearch (arr, l, r, x):

https://algorithm-visualizer.org/branch-and-bound/binary-search

BlockTrain.info

20

Check base case
if r >= l:

mid = l + (r - l) // 2
If element is present at the middle itself
if arr[mid] == x:

return mid
If element is smaller than mid, then it
can only be present in left subarray
elif arr[mid] > x:

return binarySearch(arr, l, mid-1, x)
Else the element can only be present
in right subarray
else:

return binarySearch(arr, mid + 1, r, x)
else:

Element is not present in the array
return -1

Let’s discuss some intro level questions which can be solved by just the generic template for the
binary search algorithm.
Intro Problems
- Leetcode-First Bad Version
Find the first element which is bad -> simply use the binary search template.
def firstBadVersion(self, n) -> int:

left, right = 1, n
while left < right:

mid = left + (right - left) // 2
if isBadVersion(mid):

right = mid
else:

left = mid + 1
return left

- Sqrt(x)

https://leetcode.com/problems/first-bad-version/
https://leetcode.com/problems/sqrtx/

BlockTrain.info

21

Find the square root of the number given. We can skip iteration over all the numbers and can
simply take the middle and go left or right.
def mySqrt(x: int):

left, right = 0, x
while left < right:

mid = left + (right - left) // 2
if mid * mid <= x:

left = mid + 1
else:

right = mid
return left - 1

Problem 1: Max font size (Google internship)
⭐ Google likes to test you on word problems with core principles. So even if they ask you a
binary search question, it will be framed like a real life thing so that it’s much harder to
understand. They also test OOPS sometimes, by asking you to create classes and functions to
display different things. Here’s the question:
Given:

1. Height and width of a screen where you have to type
2. Height and width of each character you type on the screen
3. Min and max range of the the font size of each character

Find the maximum font size such that the characters fit inside the screen

Once you understand the question, it’s trivial to think of a brute force problem: explore all the
possible font sizes and then see what fits at the end. Return that. Thinking a little more, we see
that we have a range (sorted) and we don’t really have to check for each font before choosing
the maximum one. Shoot -> it’s binary search.

Here’s how the pseudo code looks like:
def find_max_font():

max_font = 0
start, end = min_font, max_font
while start<=end:

mid_font = start + (end-start)//2

BlockTrain.info

22

if font_fits(mid_font):
max_font = max(max_font, mid_font)

elif mid_font == 'too big':
move left if font is too big
end = mid

else:
move right if font is too small
start = mid

return max_font

This was an additional round (round 4), so they kept it on the easier side. Some things to keep
in mind while taking a tech interview:

- Be clear with your thoughts and communicate well.
- Ask questions, look for hints, and explain before writing code.

Problem 2: Search in rotated sorted array
Leetcode #33 Search in Rotated Sorted Array
⭐ Problem: Array is sorted but rotated. [4,5,1,2,3] -> 4 came to the front instead of the back. A
brute force is just iterating and finding the element -> O(N). Can we do better?
This is a very interesting problem, because there are a couple of nice optimized solutions and
there’s a 50% chance you’ll see one of those (wow, I’m so smart). I’ve seen a few questions
based on this, so it’s important to understand this before moving forward. Let’s dive right in.

We see that the array is sorted but from a different position...
Do you see 2 arrays which are sorted? -> with a number in between which separates both the
arrays? Think how we can use binary search here.
Potential solution: Let’s call that a pivot point, separate out both the arrays, and find the element
in both separately using binary search? Does this make sense? No? Email us
0xblocktrain@gmail.com and let’s discuss it there.

int pivot = findPivot(array);
if (pivot > 0 && num >= array[0] && num <= array[pivot - 1]) {

return binarySearch(array, 0, pivot - 1, num);

https://leetcode.com/problems/search-in-rotated-sorted-array/
mailto:30DaysCoding@gmail.com

BlockTrain.info

23

} else {
return binarySearch(array, pivot, array.length - 1, num);

}

Now we want to find the pivot and then also write the binary search algo - which will be the
cliche binary search algorithm.

⭐ After some more digging, you’ll realize that this can be done with a single binary search
method as well. Let’s discuss that ->Instead of checking the mid with target (as done in a
generic binary search), we check the mid with start and end -> cause the array is distorted -> so
first we want to condition on that.

Let’s say the nums[start] is less than the nums[mid] -> we get our new start and end -> the start
and mid. We get this condition:
if (nums[start] <= nums[mid]){

if (target < nums[mid] && target >= nums[start])
end = mid - 1;

else
start = mid + 1;

}

So we just add one more condition to the already existing binary search conditions. We shift the
start and end pointers after we’ve discovered the subarray where we need to shift. Here’s the
full code:

public int search(int[] nums, int target) {
int start = 0;
int end = nums.length - 1;
while (start <= end){

int mid = (start + end) / 2;
if (nums[mid] == target)

return mid;
if (nums[start] <= nums[mid]){

if (target < nums[mid] && target >= nums[start])
end = mid - 1;

else

BlockTrain.info

24

start = mid + 1;
}
if (nums[mid] <= nums[end]){

if (target > nums[mid] && target <= nums[end])
start = mid + 1;

else
end = mid - 1;

}
}
return -1;

}

Similar Patterns
⭐ ⭐ ⭐ There are other, advanced use cases of binary search where we want to find a minimum
time or a minimum space (and more). One catch with every binary search question is the limit
from low to high -> which isn’t trivial for those problems.
For instance, Leetcode : Minimum Number of Days to Make m Bouquets. We can make ‘m’
bouquets and each one needs ‘k’ flowers. It doesn’t look like a problem which can be solved
using binary search, but it can be. We can often define a new function which does additional
condition mapping for us and then helps us find the middle.
Here’s a generic template and some awesome information to binary search questions and
identify problems where there is a limit defined. Binary search template.

Read
- Lecture 5 MIT : Binary Search Trees, BST Sort | Lecture Videos
- Binary search cheat sheet for coding interviews. | by Tuan Nhu Dinh | The Startup
- Binary Search Algorithm 101 | by Tom Sanderson | The Startup

Videos🎥
- Introduction to Binary Search (Data Structures & Algorithms #10)

Questions🤔
- Leetcode #704 Binary Search
- Leetcode #349 Intersection of Two Arrays

https://leetcode.com/problems/minimum-number-of-days-to-make-m-bouquets/
https://leetcode.com/problems/minimum-number-of-days-to-make-m-bouquets/discuss/769703/Python-Clear-explanation-Powerful-Ultimate-Binary-Search-Template.-Solved-many-problems
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-5-binary-search-trees-bst-sort/
https://medium.com/swlh/binary-search-cheat-sheet-for-coding-interviews-9c5425af357e
https://medium.com/swlh/binary-search-algorithm-101-53e564659d82
https://youtu.be/6ysjqCUv3K4
https://leetcode.com/problems/binary-search/
https://leetcode.com/problems/intersection-of-two-arrays/

BlockTrain.info

25

- Leetcode-First Bad Version
- Arranging Coins
- 35. Search Insert Position
- Leetcode #33: Search in Rotated Sorted Array
- 34. Find First and Last Position of Element in Sorted Array
- Leetcode #230 Kth Smallest Element in a BST
- Find Peak Element
- Leetcode Split Array Largest Sum
- 875. Koko Eating Bananas
- Leetcode : Minimum Number of Days to Make m Bouquets

Recursion
Introduction
⭐ Think of it as solving smaller problems to eventually solve a big problem. So if you want to
climb Mount Everest, you can recursively climb the smaller parts until you reach the top.
Another example is that you want to eat ‘15 butter naan’, so eating all of them at once won’t be
feasible. Instead, you would break down those into 1 at a time, and then enjoy it on the way.

Solving a lot of recursive problems will help you understand 3 core concepts

https://leetcode.com/problems/first-bad-version/
https://leetcode.com/problems/arranging-coins/
https://leetcode.com/problems/search-insert-position/
https://leetcode.com/problems/search-in-rotated-sorted-array/
https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array/
https://leetcode.com/problems/kth-smallest-element-in-a-bst/
https://leetcode.com/problems/find-peak-element/
https://leetcode.com/problems/split-array-largest-sum/
https://leetcode.com/problems/koko-eating-bananas/
https://leetcode.com/problems/minimum-number-of-days-to-make-m-bouquets/

BlockTrain.info

26

- Recursion
- Backtracking
- Dynamic programming

Watch this amazing video: Recursion for Beginners: A Beginner's Guide to Recursion

⭐ These are some questions I have when I look at a recursive question/solution, you probably
have the same. Let’s try to figure out them

- What happens when the function is called in the middle of the whole recursive function?
- What happens to the stuff below it?
- What do we think of the base case?
- How do we figure out when to return ?
- How do we save the value, specially in the true/false questions?
- How does backtracking come into place, wrt recursion?

Let’s try to answer these one by one. A recursive function means that we’re breaking the
problem down into a smaller one. So if we’re saying function(x/2) -> we’re basically calling the
function again with the same parameters.
So if there’s something below the recursive function -> that works with the same parameter. For
instance, calling function(x/2) with x=10 and then printing (x) after that would print 10 and then 5
and so on. Think of it as going back to the top of the function, but with different parameters.

The return statements are tricky with recursive functions. You can study about those things, but
practice will help you get over it. For instance, you have fibonacci, where we want to return the
sum of the last 2 elements for the current element -> the code is something like fib(n) + fib(n-1)
where fib() is the recursive function. So this is solving the smaller problem until when? -> Until
the base case. And the base case will return 1 -> because eventually we want the fib(n) to
return a number. This is a basic example, but it helps you gain some insights on the recursive
part of it.

Something complex like dfs or something doesn’t really return anything but transforms the 2d
matrix or the graph.

Backtracking is nothing but exploring all the possible cases by falling back or backtracking
and going to other paths.

https://youtu.be/AfBqVVKg4GE

BlockTrain.info

27

Problem 1: Generate parentheses
22. Generate Parentheses
⭐ Generate balanced parentheses, given a number.
In simple words, we want to print out all the possible cases -> valid parentheses can be
generated.
One thing which strikes me is -> we need a way to add “(” and “)” to all possible cases and then
find a way to validate so that we don’t generate the unnecessary ones.
The first condition is if there are more than 0 open / left brackets, we recurse with the right ones.
And if we have more than 0 right brackets, we recurse with the left ones. Left and right are
initialized at N - the number given.

if(left>0){
parentheses(list, s+"(", right, left-1);

}
if(right>0){

parentheses(list, s+")", right-1, left);
}

There’s a catch. We can’t add the “)” everytime we have right>0 cause then it will not be
balanced. We can balance that with a simple condition of left<right.
Base case? When both right and left are 0? -> cause we’re subtracting one as we go down to
0. Here’s the final thing:

public void dfs(List<String> list,String s, int right, int left){
if(right==0 && left==0){

https://leetcode.com/problems/generate-parentheses/

BlockTrain.info

28

list.add(s);
}
if(left>0){

dfs(list, s+"(", right, left-1);
}
if(left<right && right>0){

dfs(list, s+")", right-1, left);
}

}

Here are some other solutions to this: Generate Parentheses Solutions
Full code: Generate Parentheses Solution

Problem 2: Reverse linked list
⭐ Although this requires linked list knowledge, this is more of a recursion question. Let’s try to
solve this both iteratively and recursively to see what really is going on. Let’s discuss a short
iterative way of doing this.

- Move ahead with a pointer
- Point the current to previous -> curr.next = prev
- Move the prev by changing it to curr.

def reverseList(self, head):
prev = None
while head:

curr = head
head = head.next
curr.next = prev
prev = curr

return prev

Here’s a nice video with the explanation: Reverse a Linked List Recursively
We can also solve this recursively and it’s a great way to understand it in a better way. Here’s
how we do it:

- Store the recursive call in a node -> This takes the pointer to the end
- Point the curr’s next pointer to that
- Point head’s next to null -> this will be the tail (at every instance)

https://leetcode.com/problems/generate-parentheses/discuss/?currentPage=1&orderBy=most_votes
https://gist.github.com/aryansingh12/3530217fe778695000fdb09f5e493c19
https://youtu.be/MRe3UsRadKw

BlockTrain.info

29

public ListNode reverseList(ListNode head) {
if(head == null || head.next==null){

return head;
}
ListNode n = reverseList(head.next);
head.next.next = head;
head.next = null;
return n;

}

It’s not a super important thing to know, but a nice-to-have as a concept when you’re preparing.

Pattern: Breaking down
⭐ Tons of problems where you see a breakdown pattern can be solved using recursion. Some
of them are: power of two, power of three, division, multiples,

These are problems and patterns where we see a bigger number and we want to break it down
into a smaller thing to test. This is in alignment with the core of recursion, but it’s easier to
understand when math comes into play.

Let’s discuss a question, Power of 3. We want to return true if the number given is a power of 3.
- Iterate and find the powers -> match them
- Optimized: Iterate for less numbers
- Recursively try to solve smaller problems and break it down into n/3 every time (power of

3)
bool isPowerOfThree(int n)
{

if(n<=0)return false;
if(n%3==0)

return isPowerOfThree(n/3);
if(n==1)return true;
return false;

}

Another question, to solidify the concept: Power of 2.

BlockTrain.info

30

Super similar to power of 3, let’s look at possible solutions and maybe a new approach for this.
- Iterate and find powers, match if possible
- Optimized: Iterate for less numbers and then match
- Recursively break it down into n/2 if it doesn’t match and have base cases to check

def isPowerOfTwo(self, n: int):
if n==0:

return False
if n==1:

return True
if n%2!=0:

return False
return isPowerOfTwo(n//2)

Problem 3: Letter combination of phone numbers
17. Letter Combinations of a Phone Number
⭐ Interesting problem and can be solved both iteratively and recursively (same for any problem).
The first thing which comes to mind is to have a map of the numbers and digits, so that we can
actually use it. The second thing which is trivial is that -> we would iterate over, take all the
possible ways, and then store it in a list. It’s basically a cliche backtracking problem where we
have some arrays and we want all the possible cases in those.
A recursive function would need to have something in the arguments which we add + we update
the array (using python sub-array)
combo(combination+letter, digits[1:])

We do this for every letter and add a base case for adding the combination to the result array.
Here’s how the complete code looks like
def combo(combination, digits):

if len(digits)==0:
a.append(combination)

else:
for letter in phone[digits[0]]:

combo(combination+letter, digits[1:])

Here’s a java solution code for it: My recursive solution using Java

https://leetcode.com/problems/letter-combinations-of-a-phone-number/
https://leetcode.com/problems/letter-combinations-of-a-phone-number/discuss/8109/My-recursive-solution-using-Java

BlockTrain.info

31

Let’s also look at an iterative way of solving this. We can simply take a Queue and use BFS
(sort of) to iterate and then add the letters when the conditions are true. We can iterate over the
digits, add the possible combinations if the size is valid.

Here’s a nice solution for it: My iterative solution, very simple under 15 lines.

Backtracking goes hand in hand with recursion and we’ve discussed many more questions and
patterns in that section, so definitely follow that after this.

Read📚
- Reading 10: Recursion
- Recursion for Coding Interviews: The Ultimate Guide

Videos🎥
- Fibonacci Sequence - Recursion with memoization
- Introduction to Recursion (Data Structures & Algorithms #6)
- Intro to Recursion: Anatomy of a Recursive Solution

Questions🤔
- Explore: Leetcode Part I
- Explore: Leetcode Part II
- 150 Questions: Data structures

Extra
- Complex Recursion Explained Simply
- Recursion Concepts every programmer should know

Backtracking

https://leetcode.com/problems/letter-combinations-of-a-phone-number/discuss/8097/My-iterative-sollution-very-simple-under-15-lines
http://web.mit.edu/6.005/www/fa15/classes/10-recursion/
https://www.byte-by-byte.com/recursion/
https://youtu.be/UxICsjrdlJA?list=PL2_aWCzGMAwLz3g66WrxFGSXvSsvyfzCO
https://youtu.be/B0NtAFf4bvU
https://youtu.be/yBWlPte6FhA
https://leetcode.com/explore/learn/card/recursion-i/
https://leetcode.com/explore/learn/card/recursion-ii/
https://docs.google.com/document/d/19oevUPa1nGr_k93XrMeXOa1niBqpILbJxucAqCRNihk/edit#heading=h.tjb1wel6o86d
https://youtu.be/wRH2I6IN4BE
https://levelup.gitconnected.com/advanced-concepts-in-recursion-every-effective-programmer-should-know-de233a092dbf

BlockTrain.info

32

Introduction
⭐ Backtracking can be seen as an optimized way to brute force. Brute force approaches
evaluate every possibility. In backtracking you stop evaluating a possibility as soon as it breaks
some constraint provided in the problem, take a step back and keep trying other possible cases,
see if those lead to a valid solution.
Think of backtracking as exploring all options out there, for the solution. You visit a place,
there’s nothing after that, so you just come back and visit other places. Here’s a nice way to
think of any problem:

- Recognize the pattern
- Think of a human way to solve it
- Convert it into code.

Problem 1: Permutations
46. Permutations
⭐ We have an array [1,2,3] and we want to print all the possible permutations of this array. The
initial reaction to this is - explore all possible ways -> somehow write 2,1,3, 3,1,2 and other
permutations.
Second step, we recognize that there’s a pattern here. We can start from the left - add the first
element, and then explore all the other things with the rest of the items. So we choose 1 -> then
add 2,3 and 3,2 -> making it [1,2,3] and [1,3,2]. We follow the same pattern with others.
How do we convert this into code?

- Base case
- Create a temporary list
- Iterate over the original list

- Add an item + mark them visited
- Call the recursive function
- Remove the item + mark them univisited

Great article on more backtracking problems templates: A general approach to backtracking
questions in Java (Subsets, Permutations, Combination Sum, Palindrome Partitioning)

if(curr.size()==nums.length){
res.add(new ArrayList(curr));

https://leetcode.com/problems/permutations/
https://leetcode.com/problems/subsets/discuss/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning
https://leetcode.com/problems/subsets/discuss/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning

BlockTrain.info

33

return;
}
for(int i=0;i<nums.length;i++){

if(visited[i]==true) continue;
curr.add(nums[i]);
visited[i] = true;
backtrack(res,nums, curr,visited);
curr.remove(curr.size()-1);
visited[i] = false;

}

There are also other solutions to problems like this one, where you can modify the recursive
function to pass in something else. We can pass in something like this: function(array[1:]) -> to
shorten the array every time and then have the base case as len(arr) == 0.

Problem 2: Subsets
https://leetcode.com/problems/subsets/
⭐ We want all the possible subsets of an array [1,2,3]. Super similar to the permutations
question, but we don’t want to make the array shorter or anything, Just explore all the possible
options.

We usually make a second function which is recursive in nature and call that from the first one
-> it’s easier, cleaner, and more understandable. There are certain ways of doing it in the same
function, but this is better.
public List<List<Integer>> subsets(int[] nums) {

List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, 0);
return list;

}

Let’s build the backtrack function. Let’s use our template logic:
- Iterate over the array

- Add the item

https://leetcode.com/problems/subsets/

BlockTrain.info

34

- Backtrack - recursive call
- Remove the item

And then think of the base case...
public backtrack(List<List<Integer>> list , List<Integer> tempList, int []
nums, int start){

Add the BASE CASE here
for(int i = start; i < nums.length; i++){

tempList.add(nums[i]);
backtrack(list, tempList, nums, i + 1);
tempList.remove(tempList.size() - 1);

}
}

Base case?
We want all the possible cases -> just simply add to a new list that we pass in?
list.add(new ArrayList<>(tempList));

Something to note here is that we add a new copy of the array (templist) -> and not the same
templist because of recursion. Try it!
⭐ There are other solutions to problems like these and backtracking problems in general. You
can avoid the for loop and iterate over the array through the index you pass in to the function.
Here are some things to consider while considering this approach

- Base case: index reaching the end of the array
- Add the item, recurse, remove the item
- Recurse without considering the item
- We recurse 2 times - with and without the element -> which is the niche of backtracking,

where we have a CHOICE

So this is more on the lines of brute force when you have a CHOICE. A general approach there
is to recurse when you’ve chosen the item and when you’ve not chosen it.

private void recur(List<List<Integer>> acc, int [] array, Stack path, int
index){

if(array.length == index){

BlockTrain.info

35

acc.add(new ArrayList<>(path));
return;

}
// with array[index]
path.push(array[index]); // add array[index]
recur(acc, ns, path, index + 1);
path.pop(); // remove array[index]
// without array[index]
recur(acc, ns, path, index + 1);

}

Read this carefully before moving forward. It’s important to make the right CHOICES in your life
haha. Make sure they’re the good ones. Read more here: A general approach to backtracking
questions in Java (Subsets, Permutations, Combination Sum, Palindrome Partitioning)

Problem 3: Combination Sum
39. Combination Sum
⭐ We want to return the numbers which would add up to the target number given. We have to
return all the possible combinations. So this is basically all subsets (with repeats allowed) with a
target given.
From the get go, I know one thing -> we want to explore all cases, find the ones where the
target matches, and then add that to a list, and return that list.
Backtracking template: Make a choice

- Iterate over the array
- Add the item
- Backtrack - recursive call
- Remove the item

for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, target_left - nums[i], i); // not i + 1

because we can reuse same elements
tempList.remove(tempList.size() - 1);

}

https://leetcode.com/problems/subsets/discuss/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning
https://leetcode.com/problems/subsets/discuss/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning
https://leetcode.com/problems/combination-sum/

BlockTrain.info

36

A good thing to note here is that we pass in the target_left - nums[i] which basically means that
we’re choosing that element and then subtracting that from what we have in the argument. So
the base case with this would be
Target_left == 0 -> because that’s when we know we can make the target.
One other thing to save some time and memory can be target_left < 0 -> to return when we
reach here, because negative numbers can never become positive numbers. So once the
target_left is below 0, it can never come up -> good to just return;

public List<List<Integer>> combinationSum(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, 0);
return list;

}
private void backtrack(List<List<Integer>> list, List<Integer> tempList,
int [] nums, int remain, int start){

if(remain < 0) return;
else if(remain == 0) list.add(new ArrayList<>(tempList));
else{

for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i); // not i

+ 1 because we can reuse same elements
tempList.remove(tempList.size() - 1);

}
}

}

Give this a good read, watch this: AMAZON CODING INTERVIEW QUESTION -
COMBINATION SUM II (LeetCode) and make sure to understand it before moving forward.

Problem 4: N-queens
51. N-Queens
⭐ We want to place 8 queens such that no queen is interacting with each other. We see a
similar pattern, where the thinking goes like this -> we want to explore all possible ways such
that eventually we find an optimal thing, where queens don’t interact with each other.

https://youtu.be/IER1ducXujU
https://youtu.be/IER1ducXujU
https://leetcode.com/problems/n-queens/description/

BlockTrain.info

37

We start by placing the first, then second… until there’s a conflict. We then would have to come
back, change the previous queens, until we find the optimal way. We would have to go back to
the very start as well, and maybe try the whole problem again.
How to convert this into code?
Similar to most backtracking problems, we will follow a similar pattern:

- Place the queen on a position
- Check if that position is valid === Call the recursive function with this new position
- Remove the queen from that position

board[row][col] = 'O' # the whole board
for i in range(0, N):

if isValidPosition(board[row][col]):
board[row][col] = 'Q' # set queen
recursive()
board[row][col] = 'O' # remove queen

Make sure to think about the base cases, recursive calls, the different parameters, and
validating functions. Reference: Printing all solutions in N-Queen Problem

Here’s a beautiful visualization for this question: Backtracking - N-Queens Problem

Memoization
⭐ Memoization means storing a repetitive value, so that we can use it for later. A really nice
example here:

- If you want to climb Mount Everest, you can recursively climb the smaller parts until you
reach the top. The base case would be the top, and you would have a recursive function
climb() which does the job.

- Imagine if there are 4 camps to Mount Everest, your recursive function would make you
climb the first one, then both 1 and 2, then 1-2-3 and so on. This would be tiring, cost
more, and a lot of unnecessary work. Why would you repeat the work you’ve already
done? This is where memoization comes in.

- If you use memoization, you would store your camp ground once you reach it, so the
next time your recursive function works, it’ll get the camp ground value from the stored
set.

https://www.geeksforgeeks.org/printing-solutions-n-queen-problem/
https://algorithm-visualizer.org/backtracking/n-queens-problem

BlockTrain.info

38

function(i, value, something...){
if base_case:

do something

if stored_value[i]:
return stored_value[i]

// do something (recursive call)
stored_value[i] = value

}

Dynamic programming is Backtracking + Memoization. That’s it. Every problem is a part of this
algorithm -> explore all possible ways and then optimize them in such a way that we don’t
explore already explored paths. Stop solving dynamic programming problems the iterative way.
Practice tons of recursion + backtracking problems, and then go the iterative way.

Read📚
- A deep study and analysis of Recursive approach and Dynamic Programming by solving

the most…
- Leetcode Pattern 3 | Backtracking | by csgator | Leetcode Patterns
- A general approach to backtracking questions in Java (Subsets, Permutations,

Combination Sum, Palindrome Partitioning)
- WTF is Memoization. Okay, those who saw this term for the… | by Leo Wu | Medium

Questions🤔
- Word Search
- Leetcode #78 Subsets
- 90. Subsets II
- Letter Case Permutation
- 17. Letter Combinations of a Phone Number
- Combinations
- 39. Combination Sum
- Leetcode : Combination Sum II
- 216. Combination Sum III

https://medium.com/nerd-for-tech/a-deep-study-and-analysis-of-recursive-approach-and-dynamic-programming-by-solving-the-most-8567b56de2b1
https://medium.com/nerd-for-tech/a-deep-study-and-analysis-of-recursive-approach-and-dynamic-programming-by-solving-the-most-8567b56de2b1
https://medium.com/leetcode-patterns/leetcode-pattern-3-backtracking-5d9e5a03dc26
https://leetcode.com/problems/subsets/discuss/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning
https://leetcode.com/problems/subsets/discuss/27281/a-general-approach-to-backtracking-questions-in-java-subsets-permutations-combination-sum-palindrome-partitioning
https://chialunwu.medium.com/wtf-is-memoization-a2979594fb2a
https://leetcode.com/problems/word-search/
https://leetcode.com/problems/subsets/
https://leetcode.com/problems/subsets-ii/
https://leetcode.com/problems/letter-case-permutation/
https://leetcode.com/problems/letter-combinations-of-a-phone-number/
https://leetcode.com/problems/combinations/
https://leetcode.com/problems/combination-sum/
https://leetcode.com/problems/combination-sum-ii/
https://leetcode.com/problems/combination-sum-iii/

BlockTrain.info

39

- Combination Sum IV
- 46. Permutations
- 47. Permutations II
- 31. Next Permutation
- 51. N-Queens

BFS, DFS
Introduction
⭐ These are searching techniques to find something. It’s valid everywhere: arrays, graphs,
trees, etc. A lot of people try to confuse this with being something related to graphs, but no ->
this is just a technique to solve a generic search problem.
Here’s a great visualizer tool: Graph Traversal (Depth/Breadth First Search)

Try to understand the iterative way of solving a DFS or BFS question and how things work.
There are 3 basic things

https://leetcode.com/problems/combination-sum-iv/
https://leetcode.com/problems/permutations/
https://leetcode.com/problems/permutations-ii/
https://leetcode.com/problems/next-permutation/
https://leetcode.com/problems/n-queens/description/
https://visualgo.net/en/dfsbfs

BlockTrain.info

40

- Push the first node
- Iterate over all nodes (first time it’s just the root)
- Pop the top element
- Add the neighbors
- Repeat (Usually through the while or for loop)

Here’s a beautiful visualization of a search in a tree: Branch and Bound - Depth-Limited Search
Here’s a general iterative dfs pseudo-code template:

def dfs(root, target):
stack = []
stack.append(root) # add the first item
while len(stack)>0:

node = stack.pop() # pop the grid item
if(node == target):

return true
explore more
For trees -> if root.left or root.right
if (condition):

stack.append(new_item)
return false;

The second step is that of MEMOIZATION and we want to keep a track of all the nodes visited
when we’re iterating over. Here’s a complete version of a BFS algorithm where we keep track of
the visited node using an array discovered []
This could be anything - array, map, set - depending on the situation. The only thing we need is
to store the visited things so that we’re not repeating any work.

public static void BFS(Graph graph, int v, boolean[] discovered)
{

// create a queue for doing BFS
Queue<Integer> q = new ArrayDeque<>();

https://algorithm-visualizer.org/branch-and-bound/depth-limited-search

BlockTrain.info

41

// mark the source vertex as discovered
discovered[v] = true;
// enqueue source vertex
q.add(v);
// loop till queue is empty
while (!q.isEmpty())
{

// deque front node and print it
v = q.poll();
System.out.print(v + " ");
// do for every edge `v --> u`
for (int u: graph.adjList.get(v))
{

if (!discovered[u])
{

// mark it as discovered and enqueue it
discovered[u] = true;
q.add(u);

}
}

}
}

Trying to think of a recursive way to do this is also very important. We call dfs for every node
after exploring the neighbors and can do that in a couple of ways -> inside the for loop or
outside the for loop after adding the neighbors to a list. Here’s an approach, also linking other
approaches below.

public static void recursiveBFS(Graph graph, Queue<Integer> q,
boolean[] discovered)

{
if (q.isEmpty()) {

return;
}
// deque front node and print it
int v = q.poll();
System.out.print(v + " ");

BlockTrain.info

42

// do for every edge `v --> u`
for (int u: graph.adjList.get(v))
{

if (!discovered[u])
{

// mark it as discovered and enqueue it
discovered[u] = true;
q.add(u);

}
}
recursiveBFS(graph, q, discovered);

}

Other recursive ways: Depth First Search or DFS for a Graph
Why are we discussing the implementations for a simple search algorithm? Because this is the
basic thing that you need for a lot of problems. A lot of graph problems require you to know dfs,
bfs and this is one of those things, which is usually used with a combination of things. For
instance, you have a 2D matrix with something inside it, and you want the shortest path ->
boom, BFS. Or maybe you have a graph where you want to find the vertex of it -> boom,
DFS/BFS. So it comes in many forms, and it’s very important to understand it completely before
moving forward.

Here are some implementations and use cases for DFS, BFS:
DFS:

- Find connected components in a graph
- Calculate the vertex or edges in a graph
- Whether the graph is strongly connected or not
- Wherever you want to explore everything or maybe go in depth

BFS
- Shortest path algorithms and questions
- Ford fulkerson algorithm
- Finding nodes in a graph
- Wherever there is a shortest thing, finding something quickly, etc.

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

BlockTrain.info

43

Problem 1: Number of Islands
Number of Islands
⭐ Understanding this will definitely open your eyes about the visualization that happens in a
search algorithm, let’s go!
We have a 2d matrix, with 0’s and 1’s or some other symbols. We want to find the islands ->
where one island is one of more grid nodes which are connected together. Here’s an example:
Input: grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]

]
Output: 3

We want to connect all the 1’s together, so that we form an island and then count those islands.
A human way to do this is just count the connected 1’s and then keep a track of those. How do
we code it?
⭐ The core principle of DFS kicks in -> we start from the 1st node, pop it, mark it visited, explore
all the neighbors, and then repeat. Once this exploration is done, we start with another 1,
explore all of it’s connected 1’s and then mark those visited.
Every time we explore a new node island, we increase the count by 1 and eventually return that
number. Sounds easy? Go code it first… I’m waiting.

https://leetcode.com/problems/number-of-islands/

BlockTrain.info

44

Glad you’re back, let’s solve this both iteratively and recursively.

Here’s a recursive implementation:
- We explore every element in the grid
- If we see a 1, we call the dfs function on it, which counts the connected nodes, turns

those into something other than 1
- We also increase the count every time we see a NEW node with 1
- In the dfs method below, we take in the grid element, explore all the sides (top, right,

bottom, left), and mark the node to something else every time
- We’re not counting anything in the dfs function, just exploring all sides, changing the

digit, and basically COVERING the island up

public int numIslands(char[][] grid) {
int count=0;
for(int i=0;i<grid.length;i++){

for(int j=0;j<grid[0].length;j++){
if(grid[i][j] == '1'){

dfs(grid, i, j);
count+=1;

}
}

}
return count;

}
public void dfs(char[][] grid, int i, int j){

if(i<0 || i>=grid.length || j<0 || j>=grid[0].length){
return;

}
if(grid[i][j]== '1'){

grid[i][j] = '#';
dfs(grid, i+1,j);
dfs(grid, i,j+1);
dfs(grid, i,j-1);
dfs(grid, i-1,j);

}
}

Here’s an iterative way to solve this:

BlockTrain.info

45

The idea is the same, we start from the 1s, explore all the connected components, mark them
visited, and then increase the count for every 1. These are the steps:

- Iterate over the find the 1’s
- Call dfs for every 1 found

Iterative DFS
- Push the grid node for the 1 to the stack
- Mark the node visited (change it to something else)
- Pop the node, explore all the 4 valid neighbors
- Add those neighbor nodes to the stack

count=0
for i in range(len(grid)):

for j in range(len(grid[0])):
if grid[i][j]=='1':

dfs(grid, i, j)
count+=1

return count

def dfs(grid, i, j):
s=[]
s.append((i,j))
while len(s)>0:

a,b = s.pop()
grid[a][b]='X'
if a>0 and grid[a-1][b]=='1':

s.append((a-1,b))
if b>0 and grid[a][b-1]=='1':

s.append((a,b-1))
if a<len(grid)-1 and grid[a+1][b]=='1':

s.append((a+1,b))
if b<len(grid[0])-1 and grid[a][b+1]=='1':

s.append((a,b+1))

BlockTrain.info

46

Here’s a nice solution video explaining the same:
GOOGLE CODING INTERVIEW QUESTION - NUMBER OF ISLANDS (LeetCode)

Pattern: 2D Matrix
⭐ There are tons of problems where there’s something to find or connect in a 2d array where
the confusions just increase. This approach will help you connect the dots and approach those
problems with DFS or BFS iteratively on that array.
There’s nothing special here, but it’s good to notice how we can take [0,0] as the root and
basically convert this into a 2d matrix. This is a general way of adding the point to the queue in
java, with the help of an additional class Pair => q.offer(new Pair(i, j));

def dfs(grid, row, col):
stack = []
stack.append((row,col)) # add the first item

while len(stack)>0:
row,col = stack.pop() # pop the grid item

grid[row][col]='X' # mark it visited

conditions come here
if (condition):

stack.append(new_item)

Problem 2: Level order traversal
LeetCode 102 - Binary Tree Level Order Traversal [medium]
Print the tree in a level order -> left to right, level by level.

- Try to visualize before writing code.
- How can we get the levels at once?
- How does the core of DFS/BFS/Stack/Queue work?

Here’s how I would do it -> Think of adding the root, take out the root, add the whole second
layer or basically all the children of the previous layer’s nodes. The catch here is to add the

https://www.youtube.com/watch?v=o8S2bO3pmO4
https://leetcode.com/problems/binary-tree-level-order-traversal/

BlockTrain.info

47

whole level at once. We can do that by getting the size of the queue and then iterating over it
every time.
for(int i=0 ; i< size; i++){

TreeNode node = queue.remove();
// Temporary list for that level
list.add(node.val);
if(node.left!=null)

queue.add(m.left);
if(node.right!=null)

queue.add(m.right);
}

At the end, the queue would have the next level and we’ll repeat the whole process again for the
next nodes. Here’s how the code looks:

Set<Integer> solution = new HashSet<>();
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while(!q.isEmpty()){

List<Integer> list = new ArrayList<>();
int children = queue.size();
// iterate over all the children
for(int i=0 ; i<children; i++){

TreeNode node = queue.remove();
// Temporary list for that level
list.add(node.val);
if(node.left!=null)

queue.add(m.left);
if(node.right!=null)

queue.add(m.right);
}
solution.add(new ArrayList<>(list));

}
return solution;

BlockTrain.info

48

Problem 3: Rotten oranges
994. Rotting Oranges
⭐ Every minute a fresh orange turns rotten if it’s around a rotten orange. Similar to life -> if
you’re around negative people, you tend to be negative. Keep a positive outlook, help everyone,
and take things forward!
This is an amazing question -> let’s understand the iterative way of doing this and how to solve
any searching related question with a stack or queue -> iteratively. We have the minimum
condition here, so using BFS is the way to go! A simple pattern, as discussed before is:

- Prepare the stack/queue -> Add the initial nodes
- Pop the node from stack, mark it visited, add the valid neighbors
- Repeat the process for the new nodes.

First step is to prepare the queue. We add the rotten oranges (represented by 2) to the queue
and also count the total number of oranges. 0 -> means an empty place.

for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {

if (grid[i][j] != 0) total++;
if (grid[i][j] == 2) q.offer(new Pair(i, j));

}
}

We have the queue ready and now we iterate until it’s empty: while (stack.isEmpty()) {}. We
want to add all the neighbors of the current orange, which are in 4 directions and here’s
something to note when you have conditions like this.
When we want to traverse in all 4 directions, or maybe in 8 directions if we have a double
condition, we can make a directions dictionary and iterate over it. Something like: [[0,1], [0,-1],
[1,1], [1, 0]] or int[][] dirs = {{1,0},{-1,0},{0,1},{0,-1}};

while (! q.isEmpty()) {
int size = q.size();
rotten += size;
// if the total number of rotten oranges matches our local variable
// then return the time it took
if (rotten == total_rotten) return time;

https://leetcode.com/problems/rotting-oranges/

BlockTrain.info

49

time++;
// something

}

Now, we add the logic for adding the neighbors.
- Iterate in all 4 directions
- Check if it’s a fresh orange -> continue the loop if it’s rotten or empty cell
- Change the fresh orange into a rotten one
- Add the new position in the queue
- Increase the rotten orange for the base case -> rotten_oragen == total

for(int i = 0 ; i < size ; i++) {
int[] point = queue.poll();
for(int dir[] : dirs) {

int x = point[0] + dir[0];
int y = point[1] + dir[1];
// check for the conditions
// continue if it's rotten or empty
// we're only concerned about the fresh ones here
if(x < 0 || y < 0 || x >= rows || y >= cols || grid[x][y] == 0 ||

grid[x][y] == 2) continue;
// turn fresh into rotten
grid[x][y] = 2;
queue.offer(new int[]{x , y});
rotten_oranges++;

}
}

Complete code here: [Java] Clean BFS Solution with comments
Video solution: AMAZON CODING INTERVIEW QUESTION - ROTTING ORANGES

Read📚
- Leetcode patterns 1

https://leetcode.com/problems/rotting-oranges/discuss/238681/Java-Clean-BFS-Solution-with-comments
https://youtu.be/TzoDDOj60zE
https://medium.com/leetcode-patterns/leetcode-pattern-1-bfs-dfs-25-of-the-problems-part-1-519450a84353

BlockTrain.info

50

- Leetcode Patterns 2
- Depth-First Search (DFS) vs Breadth-First Search (BFS) – Techie Delight

Videos🎥
- Breadth First Search Algorithm | Shortest Path | Graph Theory
- Depth First Search Algorithm | Graph Theory
- Breadth First Search grid shortest path | Graph Theory

Questions🤔
- Flood Fill
- Leetcode - Binary Tree Preorder Traversal
- Number of Islands
- Walls and Gates
- Max Area of Island
- Number of Provinces
- 279. Perfect Squares
- Course Schedule
- C/C++ Program for Detect cycle in an undirected graph
- 127. Word Ladder
- 542. 01 Matrix
- Rotting Oranges
- 279. Perfect Squares
- 797. All Paths From Source to Target
- 1254. Number of Closed Islands

Dynamic Programming
Introduction
⭐ Dynamic programming is nothing but recursion + memoization. If someone tells you anything
outside of this, share this resource with them. The only way to get good at dynamic

https://medium.com/leetcode-patterns/leetcode-pattern-2-dfs-bfs-25-of-the-problems-part-2-a5b269597f52
https://www.techiedelight.com/depth-first-search-dfs-vs-breadth-first-search-bfs/
https://youtu.be/oDqjPvD54Ss
https://youtu.be/7fujbpJ0LB4
https://youtu.be/KiCBXu4P-2Y
https://leetcode.com/problems/flood-fill/
https://leetcode.com/problems/binary-tree-preorder-traversal/
https://leetcode.com/problems/number-of-islands/
https://leetcode.com/problems/walls-and-gates/
https://leetcode.com/problems/max-area-of-island/
https://leetcode.com/problems/number-of-provinces/description/
https://leetcode.com/problems/perfect-squares/
https://leetcode.com/problems/course-schedule/
https://www.geeksforgeeks.org/detect-cycle-undirected-graph/
https://leetcode.com/problems/word-ladder/
https://leetcode.com/problems/01-matrix/
https://leetcode.com/problems/rotting-oranges/
https://leetcode.com/problems/perfect-squares/
https://leetcode.com/problems/all-paths-from-source-to-target/
https://leetcode.com/problems/number-of-closed-islands/

BlockTrain.info

51

programming is to be good at recursion first. You definitely need to understand the magic of
recursion and memoization before jumping to dynamic programming.
The day when you solve a new question alone, using the core concepts of dynamic
programming -> you’ll be much more confident after that.

So if you’ve skipped the recursion, backtracking, and memoization section -> go back and
complete those first! If you’ve completed it, keep reading. You will only get better at dynamic
programming (and problem solving in general) by solving more recursion (logical) problems.

Problem 1: 01 Knapsack
⭐ This is the core definition of dynamic programming. Understanding this problem is super
important, so pay good attention. Every problem in general, and all DP questions have a
CHOICE at every step.

We have a weights array and a values array, where we want to choose those values which will
return us the maximum weight sum (within the limit). There is a max weight given, which we
have to take care of.
Just from the first glance, I see that maxWeight will help us with the base case. At every step,
we have 2 CHOICES:

- Include the value: Take value from values[index] + move ahead
- Exclude the value: Just move ahead

It's also important to think about what your recursive function would look like. What values to
pass, how will we iterate over the array, how will we use the base case through those
arguments.

BlockTrain.info

52

Thinking about the arguments, a good recursive function would be passing in the weights,
values, index, and the remaining weight? That way remaining_weight == 0 can be our base
case. You can absolutely have other recursive functions with different arguments, it’s about
making things easier.

//include the ith item
int include = v[i] + knapsack(w, v, maxWeight - weights[i], i+1);
// don't include
int exclude = knapsack(weights, values, maxWeight, i+1);

We think of the base case now. A straightforward one looks like maxWeight === 0, which is also
the REMAINING weight as we’re subtracting the weight every time we’re iterating with the
included item.
The second one and the most usual one is when you reach the end of the array, so index ===
weights.length. Can also be values.length as they’re the same.
Here’s the code for it:
knapsack(weights [], values [], maxWeight = 0, index = i, memo_set = set())
{
if(i == weights.length || maxWeight == 0){

BlockTrain.info

53

return 0;
}
//include the ith item
int include = v[i] + knapsack(w, v, maxWeight - weights[i], i+1);
// don't include
int exclude = knapsack(w, v, maxWeight, i+1);
return Math.max(include, exclude);

}
// w -> weights, v -> values

There is a problem here, we’re doing a lot of repetitive work here, do you see it? No? Go wash
your eyes.
We’re re-calculating a lot of states -> where the value maxWeight - weights[i] value is
something. For example 5 is 8-3 but it’s also 9-4. So we don’t want to do this, how can we stop
this? MEMOIZATION
Simply store the max value and return it with the base case. You can think of memoization as
your SECOND base case.

knapsack(weights [], values [], maxWeight = 0, index = i, memo_set = set())
{
if(i == weights.length || maxWeight == 0){
return 0;

}
String key = maxWeight + "unique Key" + i;
// check if the key is inside this set
if(memo_set.containsKey(key)){
return memo_set.get(key);

}
//include the ith item
int include = v[i] + knapsack(w, v, maxWeight - weights[i], i+1, set);
// don't include
int exclude = knapsack(w, v, maxWeight, i+1, set);
memo_set.put(key,Math.max(op1, op2));

BlockTrain.info

54

return Math.max(include, exclude);

We set the key and max value in the set, and then use that in the base case to return when that
condition is reached. This is the recursive approach and once you’ve understood how the basis
of this works, you can go to the iterative version. It’s very important to solve and understand it
recursively before moving forward.
- Watch this awesome visualization to understand it more: Dynamic Programming - Knapsack
Problem
- Read more here: 0–1 Knapsack Problem – Techie Delight

Problem 2: Min path sum
64. Minimum Path Sum
⭐ Most of the dynamic programming (and all other) questions are solved by making a choice!
Let’s discuss a question. Find the minimum cost path from top left to bottom right of a 2D matrix.

A human way to look at this is to make quick decisions and see where the biggest numbers are,
and then choose them. However, humans would fail if this grid is really big.
How do we solve this using a program?
At every step, we make a CHOICE. Either we go down or we go right. And this is where
recursive kicks in, making this a dynamic programming question -> where we try to solve small
problems to eventually solve the big one.

At every step, we’ll do these 2 things:
bottom_sum = current_sum + grid[row+1][col]
right_sum = current_sum + grid[row][col+1]

https://algorithm-visualizer.org/dynamic-programming/knapsack-problem
https://algorithm-visualizer.org/dynamic-programming/knapsack-problem
https://www.techiedelight.com/0-1-knapsack-problem/
https://leetcode.com/problems/minimum-path-sum/

BlockTrain.info

55

And now we convert this into recursive code,
current_sum = grid[row][col]
max_sum = min(
current_sum + function(grid[row+1][col]),
current_sum + function(grid[row][col+1]
))

Now we can make it even easier by just passing the rows and columns instead of the whole grid
and bringing out some things to clean it.

current_sum = grid[row][col]
max_sum = current_sum + min(function(row+1, col),function(row, col+1]))

Instead of calculating the sum at every step, we pass it back to the recursive function who does
the magic for us. We would have a BASE CASE which helps us in solving the smaller problem,
which eventually solves the big one.

// this is the exit of the recursion
if(row == 0 && col == 0) return grid[row][col];

/** When we reached the first row, we could only move horizontally.*/
if(row == 0) return grid[row][col] + min(grid, row, col - 1);

/** When we reached the first column, we could only move vertically.*/
if(col == 0) return grid[row][col] + min(grid, row - 1, col);

return grid[row][col] + min(f(grid, row - 1, col), f(grid, row, col - 1));

More here: Minimum path sum solution.

Problem 3: Minimum cost of tickets
⭐ Another interesting problem to discuss, let’s do it.

https://leetcode.com/problems/minimum-path-sum/discuss/344980/Java.-Details-from-Recursion-to-DP

BlockTrain.info

56

We’re going on a trip and we want to make it as cheap as possible (cause we’re all cheap
people). We want to save as much money as possible, and we’re gonna write a piece of code
which does it for us.

Here’s the deal: We have costs for 1, 7, and 30 days, and an array of the days we’re travelling,
we want to optimize it such that the cost is the lowest. Solving it a humanly way, we would
check all the possible ways and then make a decision -> hence making it a DP problem -> we
explore all the possible cases with brute force and then memoize it.
Exploring all the cases:
int option_1day = costs[0] + rec(days, costs, current_day);
int option_7days = costs[1] + rec(days, costs, current_day);
int option_30days = costs[2] + rec(days, costs, current_day);

We need to have a way to change the ‘days’ such that -> if we choose option 1 (1 day), we want
to move to the next POSSIBLE day. If we choose option 2 (7 days), we want to move to the next
POSSIBLE day within 7 days and the same with 30 days. So there’s a condition before we
recurse every time -> we want to change the current_day variable
Here’s the condition:
for(int i=0; i < days.length; i++){
// If we go beyond the possible limit, break
if(days[i] >= days[current_day] + 1, 7, 30){ // For all 3 cases

break;
}

}

Base case? When the index or the current_day goes beyond the days array
if(current_day >= days.length) return 0;

This can be different depending on your conditions -> maybe you’re iterating over the days
array through a for loop and creating some magic there. A right base case would probably be
validating the current day or something in that case.

Here’s the combined code solution:
private static int rec(int days[], int costs[], int i, int dp[]){

BlockTrain.info

57

if(i >= days.length) return 0;
int option_1day = costs[0] + rec(days, costs, i+1, dp);
int k = i;
for(; k <days.length; k++){

if(days[k] >= days[i] + 7){
break;

}
}
int option_7days = costs[1] + rec(days, costs, k, dp);

for(; k <days.length; k++){
if(days[k] >= days[i] + 30){

break;
}

}
int option_30days = costs[2] + rec(days, costs, k, dp);
return Math.min(1Day, Math.min(7Days, 30Days));

}

Problem 4: Buy and sell stocks 3
Leetcode - Best Time to Buy and Sell Stock III
⭐ Try this first: Q. 121. Best Time to Buy and Sell Stock, although they’re not similar, but it’s
nice to get a feel of that one before coming to this one.
Let’s discuss this one. We have an array, we have to buy and then sell - 2 times, and then find
the maximum profit we can earn by doing this. Eg [3, 3, 5, 0, 0, 3, 1, 4], let’s solve this in a
human way.
Buy at 3, sell at 5. Then buy at 0, sell at 4. Total is 6. Easy? I just thought of the difference as I
was going, what could be the maximum difference. However, this approach can only work for
very simple examples or the first question (Q. 121. Best Time to Buy and Sell Stock).
Let’s solve it through code.
At every step when we iterate from left to right, we have a CHOICE. It’s a little complex, think a
little. The CHOICE is to either buy or not buy OR sell or not sell when you’re at that step. We do
this because we’re buying or selling only 2 times. Here’s how the choices look:

https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
https://leetcode.com/problems/best-time-to-buy-and-sell-stock/
https://leetcode.com/problems/best-time-to-buy-and-sell-stock/

BlockTrain.info

58

// if we're buying right now
lets_buy = function() - array[i]
lets_not_buy = function()

// if we're selling right now
lets_sell = function() + array[i]
lets_not_sell = function()

Here’s the code for this: Buy and Sell 3 solution
We’re coming up with a dynamic programming guide with 25 questions discussed in complete
detail, stay tuned for that. Subscribe to our newsletter here for more.

Problem 5: Paint house
leetcode 256. Paint House (Python)
⭐ There are a row of n houses, each house can be painted with one of the three colors: red,
blue or green. The cost of painting each house with a certain color is different. You have to paint
all the houses such that no two adjacent houses have the same color.

At every step, we have a CHOICE to choose a color and then see what would be the maximum
at the very end. So we explore all the possible cases, remove the repetitive cases using
memoization, and eventually solve the question by ‘DP’. At every step,

- If you choose red, then choose the min of blue or green from previous row
- If you choose blue, then choose the min of red or green from previous row
- If you choose green, then choose the min of red or blue from previous row

public int minCost(int[][] costs) {
if(costs == null || costs.length == 0) return 0;
int n = costs.length;
for(int i = 1; i < n; i++){

costs[i][0] += Math.min(costs[i-1][1], costs[i-1][2]);
costs[i][1] += Math.min(costs[i-1][0], costs[i-1][2]);
costs[i][2] += Math.min(costs[i-1][0], costs[i-1][1]);

}

https://gist.github.com/aryansingh12/f2131aea5528a10297aa340d5e3eb7d8
https://30dayscoding.substack.com/
https://zhenyu0519.github.io/2020/02/21/lc256/

BlockTrain.info

59

return Math.min(costs[n-1][0], Math.min(costs[n-1][1], costs[n-1][2]));
}

Solution Video: LINKEDIN - PAINT HOUSE (LeetCode)

Problem 6: Edit Distance
LeetCode – Edit Distance
⭐ Here’s the question: We have 2 strings and we want to transform the first one into the second
one using minimum operations. Every time, you can either insert, delete, or change the letter
from any of the strings.
WOW, I have no clue how to solve this to be honest :P. Let’s think together.
We have 3 CHOICES, edit/delete/or inserting a new character. This gives me a hint that at
every step, I can do 3 things and eventually explore all possible ways to find the answer. We
can then use memoization for repetitive work and we’ll have our answer. Sounds easy? … no
it’s not. Come on, when did DP become easy?

Just kidding, let’s make it easy. 3 choices? 3 recursive options -> insert, delete, and update. But
there’s a catch, deletion doesn’t mean we’re deleting -> we’ll just call the string[1:] or
string.substring(1) in the recursive function to create the deletion identity. Same for inserting ->
adding a letter in one string, means deleting something from the other (in a way), so we can mix
and match the deleting/insertion operations. Coming to update -> that just means we’re
changing that letter and moving forward, so the recursive call will be first[1:] and second[1:].
Here’s how the recursive calls look like:

int delete = rec(s, t.substring(1));
int insert = rec(s.substring(1), t);
int update = rec(s.substring(1), t.substring(1));

Base case? You forgot right? Well, forget getting that internship then. Just kidding, let’s think of
the base case -> if we have both the strings inside our function -> if one of them finishes
(because we’re taking substrings) -> we should handle those cases. Here’s how that will look:
if(first_string.length() == 0)
return second_string.length();

https://youtu.be/fZIsEPhSBgM
https://leetcode.com/problems/edit-distance/

BlockTrain.info

60

if(second_string.length() == 0)
return first_string.length();

Matching case? We also want to recurse with substring(1:) when both the characters match.
This is the same as the update operation but without adding 1 to the final result.
Watch this awesome visualization: Dynamic Programming - Levenshtein's Edit Distance
Here’s the combined result:

public static int rec(String s, String t){
if(first.length() == 0)

return second.length();
if(first.length() == 0)

return second.length();
// if characters are same
if(s.charAt(0) == t.charAt(0))

// don’t add 1 here as the characters match
return rec(s.substring(1), t.substring(1));

else{
int op1 = rec(first.substring(1), second.substring(1));
int op2 = rec(firs, second.substring(1));
int op3 = rec(first.substring(1), second);
return 1 + Math.min(op1, Math.min(op2, op3));

}
}

Here’s the full solution: luckykumardev/leetcode-solution

Read📚
- My experience and notes for learning DP
- Dynamic Programming (Theory - MIT)
- Dynamic Programming (Theory MIT)

https://algorithm-visualizer.org/dynamic-programming/levenshteins-edit-distance
https://github.com/luckykumardev/leetcode-solution
https://github.com/luckykumardev/leetcode-solution
https://leetcode.com/discuss/general-discussion/475924/my-experience-and-notes-for-learning-dp
http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf
https://www.cs.cmu.edu/~avrim/451f09/lectures/lect1001.pdf

BlockTrain.info

61

Videos🎥
- MIT Playlist: 19. Dynamic Programming I: Fibonacci, Shortest Paths
- Dynamic Programming - Learn to Solve Algorithmic Problems & Coding Challenges

Questions🤔
Easy

- 53. Maximum Subarray
- 509. Fibonacci Number
- 70. Climbing Stairs
- Min Cost Climbing Stairs
- N-th Tribonacci Number

Medium
- 322. Coin Change
- 931. Minimum Falling Path Sum
- Minimum Cost For Tickets
- 650. 2 Keys Keyboard
- Leetcode #152 Maximum Product Subarray
- Triangle
- 474. Ones and Zeroes
- Longest Arithmetic Subsequence
- 416 Partition Equal Subset Sum
- 198. House Robber
- Leetcode - Decode Ways
- 139. Word Break
- LeetCode – Edit Distance
- 300. Longest Increasing Subsequence
- 787. Cheapest Flights Within K Stops

Trees

https://www.youtube.com/watch?v=OQ5jsbhAv_M&list=PLcDimPvbmfT8qAxD6JH_kmXiQwTNcoK78
https://youtu.be/oBt53YbR9Kk
https://leetcode.com/problems/maximum-subarray/
https://leetcode.com/problems/fibonacci-number/
https://leetcode.com/problems/climbing-stairs/
https://leetcode.com/problems/min-cost-climbing-stairs/
https://leetcode.com/problems/n-th-tribonacci-number/
https://leetcode.com/problems/coin-change/
https://leetcode.com/problems/minimum-falling-path-sum/
https://leetcode.com/problems/minimum-cost-for-tickets/
https://leetcode.com/problems/2-keys-keyboard/
https://leetcode.com/problems/maximum-product-subarray/
https://leetcode.com/problems/triangle/
https://leetcode.com/problems/ones-and-zeroes/
https://leetcode.com/problems/longest-arithmetic-subsequence/
https://leetcode.com/problems/partition-equal-subset-sum/
https://leetcode.com/problems/house-robber/
https://leetcode.com/problems/decode-ways/
https://leetcode.com/problems/word-break/
https://leetcode.com/problems/edit-distance/
https://leetcode.com/problems/longest-increasing-subsequence/
https://leetcode.com/problems/cheapest-flights-within-k-stops/

BlockTrain.info

62

Introduction
⭐ I love trees, but actual ones - not these. Just kidding, I love all data structures. Let’s discuss
trees. They’re tree-like structures (wow) where we can store different things, for different
reasons, and then use them to our advantage. Here’s a nice depiction of how the actually look:

Recursion is a great way to solve a lot of tree problems, but the iterative ones actually bring out
the beauty of them. Making a stack and queue, adding and popping things from that, exploring
children, and repeating this would definitely make sure you understand it completely. You
should be seeing this visually in your head, when you do it iteratively.

Pattern: Traversals
⭐ There are 3 major ways to traverse a tree and some other weird ones: let’s discuss them all.
The most famous ones are pre, in, and post - order traversals. Remember, in traversals -> it’s
not the left or right node (but the subtree as a whole).

BlockTrain.info

63

Inorder traversal
Let’s start with inorder traversal: We define a stack and will traverse the tree iteratively.
Recursive solutions to these 3 basic ones are pretty straightforward, so we’ll try to understand
them a little more with iterative ones.

We start with the root, move until it’s null or the stack is empty. We move to the left if we can, if
not -> we pop, add the popped value and then move right.
List<Integer> res = new ArrayList<>();
if(root==null) return res;
Stack<TreeNode> stack = new Stack<>();
TreeNode curr = root;
while(curr!=null || !stack.isEmpty()){

if(curr!=null){
stack.push(curr);
curr = curr.left;

}else{
curr = stack.pop();
res.add(curr.val);
curr = curr.right;

}
}
return res;

Pre order traversal
⭐ We add the root, then the left subtree, and then the right subtree. It’s a stack so things work in
the opposite direction -> first in last out, so make sure to check that carefully.

Stack<Node> stack = new Stack();
stack.push(root);
result = [];
while (!stack.empty())
{

Node curr = stack.pop();
result.push(curr.data);
// print node

BlockTrain.info

64

if (curr.right != null) {
stack.push(curr.right);

}
if (curr.left != null) {

stack.push(curr.left);
}

}

Post order traversal
⭐ We visit the left subtree, then the right subtree, and then the root. So we simply add the left
item first, then the right item, and the root.

Stack<Node> stack = new Stack();
stack.push(root);
result = []
while (!stack.empty())
{

Node curr = stack.pop();
result.push(curr.data);
if (curr.left != null) {

stack.push(curr.left);
}
if (curr.right != null) {

stack.push(curr.right);
}

}
// Print the REVERSE of the result.
// Or store it in a stack

Additional questions
- LeetCode 102 - Binary Tree Level Order Traversal [medium]
- Kth Smallest Element in a BST
- Leetcode #98 Validate Binary Search Tree

https://leetcode.com/problems/binary-tree-level-order-traversal/
https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/
https://leetcode.com/problems/validate-binary-search-tree/

BlockTrain.info

65

- Binary Tree Zigzag Level Order Traversal
- Binary Tree Right Side View

Applications
- Number of nodes
- Height of tree or subtree
- Heap sorting

Problem 1: Min depth of a tree
⭐ The question is -> what’s the minimum depth or where is the lowest child for the tree.
From the get go, I’m thinking of finding a node which doesn’t have any child?
It’s about the height, so I’m thinking of going level by level and then seeing when we hit a node
with no children? Ooooooo.. Sounds like a good plan, let’s do that.
Let’s go level by level and see where the node with no children is -> we return it as soon as we
find that. Here’s the code for it:

public static int depthOfTree(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
int minimumTreeDepth = 0;
while (!queue.isEmpty()) {
minimumTreeDepth++;
int levelSize = queue.size();
for (int i = 0; i < levelSize; i++) {
TreeNode currentNode = queue.poll();
// leaf node condition
if (currentNode.left == null && currentNode.right == null)
return minimumTreeDepth;

// explore the children and add those
if (currentNode.left != null)
queue.add(currentNode.left);

if (currentNode.right != null)
queue.add(currentNode.right);

// add other neighbors if this is a n-ary tree
}

}

https://leetcode.com/problems/binary-tree-zigzag-level-order-traversal/
https://leetcode.com/problems/binary-tree-right-side-view/

BlockTrain.info

66

return minimumTreeDepth;
}

This is the same as level order tree traversal -> we push the node initially, pop it -> add the
children on the next level and then repeat the process.

Problem 2: LCA of binary tree
236 - Lowest Common Ancestor of a Binary Tree
⭐ Problem: Find the lowest common parent of 2 given nodes in a tree. They could be any 2
nodes.
Damn, what a nice question. We were traversing down for this whole time, but it sounds like we
want to go up from both the nodes and then find the parent which comes first. How do we do
that? (no clue, BYE)
Just kidding, let’s do it. The first thing which comes to my mind is that we can start from the
node, maintain a separate list, add parent-node relation there and then maybe look at that list to
find that first parent? It is very important to understand this (so writing code iteratively) and then
thinking more towards writing a recursive solution.

Having a parent node relation is important here, so here’s the first thing I think: We make a map
and store {parent: node} inside that map as we go down.
// store parent and node relation if valid

parent_map[node.left] = node
parent_map[node.right] = node

So we do a simple iterative DFS, store the parent node relation, and then come back to see that
relation to find the common node.
while node_1 not in parent_map or node_2 not in parent_map:

node = stack.pop()
if node.left != None:

parent_map[node_1.left] = node_1
stack.append(node.left)

if node.right != None:
parent_map[node.right] = node
stack.append(node.right)

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

BlockTrain.info

67

Here we fill in the parent_map and try to build the parent node relation for all nodes. Once we
have the map ready, we can use that map to go back and find the common ancestor. We make
a set, add the first node in the set while iterating over the parent_map, then we check for the
node_2 in the set and when we find that -> we break the while loop and return node_2 at that
point.

node_set = set()
while node_1:

node_set.add(node_1)
node_1 = parent_map[p]

while node_2 not in node_set:
node_2 = parent_map[node_2]

return node_2

It’s often hard to come up with recursive solutions instantly, but over time - you’ll be more
comfortable (I’m not :P) to bring them up.
More solutions here: Lowest Common Ancestor of a Binary Tree

Problem 3: Binary tree to BST
⭐ We have a binary tree and we want to convert that into a binary search tree, where the left
subtree is smaller than the root, and the right subtree is greater than the root.
Doesn’t this look similar to the inorder traversal ??? Inorder traversal gives us the binary search
tree in a sorted order, so we can use that to bring it back up as well.
Wait… whaaaat? Haha yeah.

We just need an iterator to traverse through the next nodes from an array, list, set, or something
else.
Here’s how it’ll look:
convertToBST(Node root, Iterator<Integer> it)
{

if (root == null) {
return;

}
convertToBST(root.left, it);
root.data = it.next();

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/discuss/?currentPage=1&orderBy=most_votes

BlockTrain.info

68

convertToBST(root.right, it);
}

A solution video explaining the same: Converting Binary Tree to Binary Search Tree without
changing spatial structure

Read📚
- Leetcode Pattern 0 | Iterative traversals on Trees | by csgator | Leetcode Patterns
- Inorder Tree Traversal – Iterative and Recursive – Techie Delight

Videos🎥
- Data structures: Introduction to Trees
- Binary Tree Bootcamp: Full, Complete, & Perfect Trees. Preorder, Inorder, & Postorder

Traversal.
- 5. Binary Search Trees, BST Sort

Questions🤔
- Leetcode - Binary Tree Preorder Traversal
- Leetcode #94 Binary Tree Inorder Traversal
- Leetcode - Binary Tree Postorder Traversal
- Leetcode #98 Validate Binary Search Tree
- 783. Minimum Distance Between BST Nodes
- Symmetric Tree
- Same Tree
- Leetcode #112 Path Sum
- Leetcode #104 Maximum Depth of Binary Tree
- Leetcode #108 Convert Sorted Array to Binary Search Tree
- Leetcode #98 Validate Binary Search Tree
- Binary Search Tree Iterator
- 96. Unique Binary Search Trees
- Serialize and Deserialize BST
- Binary Tree Right Side View
- 96. Unique Binary Search Trees

https://youtu.be/wBFttOncVUc
https://youtu.be/wBFttOncVUc
https://medium.com/leetcode-patterns/leetcode-pattern-0-iterative-traversals-on-trees-d373568eb0ec
https://www.techiedelight.com/inorder-tree-traversal-iterative-recursive/
https://youtu.be/qH6yxkw0u78
https://youtu.be/BHB0B1jFKQc
https://youtu.be/BHB0B1jFKQc
https://youtu.be/9Jry5-82I68
https://leetcode.com/problems/binary-tree-preorder-traversal/
https://leetcode.com/problems/binary-tree-inorder-traversal/
https://leetcode.com/problems/binary-tree-postorder-traversal/
https://leetcode.com/problems/validate-binary-search-tree/
https://leetcode.com/problems/minimum-distance-between-bst-nodes/
https://leetcode.com/problems/symmetric-tree/
https://leetcode.com/problems/same-tree/
https://leetcode.com/problems/path-sum/
https://leetcode.com/problems/maximum-depth-of-binary-tree/
https://leetcode.com/problems/convert-sorted-array-to-binary-search-tree/
https://leetcode.com/problems/validate-binary-search-tree/
https://leetcode.com/problems/binary-search-tree-iterator/
https://leetcode.com/problems/unique-binary-search-trees/
https://leetcode.com/problems/serialize-and-deserialize-bst/
https://leetcode.com/problems/binary-tree-right-side-view/
https://leetcode.com/problems/unique-binary-search-trees/

BlockTrain.info

69

- Binary Search Tree Iterator

Graphs
Introduction
⭐ A lot of graph problems are covered by DFS, BFS, topo sort in general -> but we’re going to
do a general overview of everything related to graphs. There are other algorithms like Djikstra’s,
MST, and others - which are covered in the greedy algorithms section.

A lot of graph problems are synced with other types = dynamic programming, trees, DFS, BFS,
topo sort, and much more. You can think of those topics sort of coming under the umbrella of
graph theory sometimes.

Problem 1: Finding the root vertex

⭐ A human way of finding the root will be to look at 4 and say that there are no incoming edges
at 4, so it’s the root. Think of it in a tree like format, where the root is at the top and we have
children below it.

How do we code this?

https://leetcode.com/problems/binary-search-tree-iterator/

BlockTrain.info

70

We want to find a node which doesn’t have any incoming nodes. So we start from the first node,
go to the neighbors, mark all the neighbors visited (and not vertex -> because they have an
incoming edge). We keep doing this until we reach the end and have a node which is not in the
visited set.

An important part of graph algorithms is also to transform the given input into an adjacency list.
We iterate over the edges and make a mapping from source to destination, something like this:
function(List<Edge> edges, int N)

{
adjList = new ArrayList<>();
for (int i = 0; i < N; i++) {

adjList.add(new ArrayList<>());
}
// add edges to the directed graph
for (Edge edge: edges) {

adjList.get(edge.source).add(edge.dest);
}

}

Then we use this list to do our searching!

So the solution here seems to be trivial -> we iterate over, find the new nodes, mark the
neighbors visited, and then finally return the vertex. DFS/BFS anything works -> let’s try to do it
recursively. We have the theory of strongly connected components here, which is used to find
different sets of nodes in a graph which are connected with each other -> which can be modified
to return a node with no vertex.

Here are the steps
- We start exploring from 0 to n, we call DFS() if the node isn’t visited, and then mark it

and it’s neighbors visited during DFS
- We also store the value of the iterating node till the very end -> this is the last node

which was discovered and is our best bet
- We then call DFS again from this node and see if we find any unvisited nodes. If we do

find any unvisited nodes -> it means that there are more than 2 root vertices -> return -1.
If we don’t find any unvisited, meaning that all nodes are visited, then we return the last
element that we stored.

BlockTrain.info

71

Let’s analyse through code. We explore and call dfs on the nodes and keep a track of the last
node:
boolean[] visited = new boolean[N];
int last_node = 0;
for (int node = 0; node < N; node ++)
{

if (!visited[node])
{

DFS(graph, node, visited);
last_node = node;

}
}

Once we’re out of this loop, we have the last_node stored ->> which is our best bet of being the
vertex. Now we can reset the visited array and check if the visited array has any more nodes or
not.
- Why are we resetting the value of the visited array? Because we want to do a fresh search.
- Why are we checking for visited [i] -> because the vertex should be the only one which was
not visited.
- Why are we returning -1 => because we didn’t find the vertex if there are more than 1 nodes
not explored -> meaning more than 1 vertex.

// reset visited = [false] for every node
DFS(graph, last_node, visited);
for (int i = 0; i < N; i++)
{

if (!visited[i]) {
// return -1 if we find an unvisited node

return -1;
}

}
// return the last node if we've visited all nodes.
return last_node;

BlockTrain.info

72

Here’s an article, explaining more about this: Find root vertex of a graph – Techie Delight

Problem 2: Graph coloring
⭐ This is a very interesting problem covering the core of graph iteration, so let’s take a look
here.

We want to color the nodes in a way that no 2 consecutive nodes have the same color. There
are a lot of implementations attached to this concept, some of them are:

- Scheduling: Problems where we have a list of jobs or times or rooms, and we want to
find an optimal way to find the schedules of different things.

- Other seating related problems can also be solved using this approach - where we don’t
want any 2 people sitting next to each other.

A general approach to problems like these:
- Start from a node
- Check the colors of the neighbors, store it in a set, and then use that set for the next

color.

// check colors of adjacent vertices of `node` and store them in a set
for (int i: graph.adjList.get(u))
{

if (result.containsKey(i)) {
assigned.add(result.get(i));

}
}

https://www.techiedelight.com/root-vertex-graph/

BlockTrain.info

73

Then we try to find the color for the node. This will be a simple search algorithm, where we
iterate over and find the color:

// check for the first free color
int node_color = 1;
for (Int color: colors)
{

if (node_color != color) {
break;

}
node_color++;

}

Once we find the color -> node_color -> we add it to the node {node: color} and store it in a list.
Other questions and concepts in this range can be solved with a similar pattern:

- Explore the nodes
- Find the neighboring colors/conditions
- Add those and store to find the next best thing

Similar questions
- [849] Maximize Distance to Closest Person
- Leetcode : Exam Room
Try to use Interesting random things to find the closest or the minimum distance things. Think of
2 pointers, multiple iterations, traversing from the back, priority queue, etc.
⭐ We don’t have to think of every question in a graph or tree as a graph or tree question. Try to
find the conditions, see how you can restrict them and find the next optimal thing. Questions like
these help you with problem solving. Once you start thinking of different random ways to solve a
problem in your head, Woohoo. You’re a better problem solver than yesterday! It’s about your
own journey of learning and growing, keep it up!

Credits
- Graph coloring - Wikipedia
- Scheduling (computing)

https://leetcode.com/problems/maximize-distance-to-closest-person/
https://leetcode.com/problems/exam-room/
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Scheduling_(computing)

BlockTrain.info

74

Problem 3: Detect cycle in graph
⭐ If you have an undirected graph and want to find the cycle, what do you do? I would leave the
interview and go home.
Just kidding, let’s try to solve this.
We want to search through the graph, see if we find the visited node again and then return true.
There’s a catch here -> it’s an undirected graph, so we don’t know if the parent has an outgoing
arrow or not -> there’s no way to tell which node is the parent and parent-child nodes are
always connected.

boolean visited[]=new boolean[V];
for(int i=0;i<V;i++){

if(!visited[i]){
if(DFS(adj,i,visited,-1))
return true;

}
}
return false;

So we need an additional condition here: To check for the parent node when writing Dfs code.
So how do we check for the parent?
We can pass in the parent value every time we’re calling the recursive function. So every time
you explore a new node, you pass in that node as the ‘parent’ variable. The next time that
parent variable gets changed to the new node.

static boolean DFS(adj,int head, boolean visited[], int parent){
visited[head]=true;
// iterate over the adjacency list
for(int node:adj.get(head)){

if(!visited[node]){
// pass head to the DFS function
if(DFS(adj,node,visited, head))
return true;

}
// we check the node and parent relation here
else if(node != parent)
return true;

}

BlockTrain.info

75

// if we don't find the cycle
return false;

}

For iterative solution, we follow the simple DFS path with stack
- Add the node to the stack
- Add a condition -> In this case: check for the cycle
- Pop the node and explore the neighbors
- Add the valid neighbors to the stack

We can pass in a {root, parent} and then check once we pop it off the stack.
stack.push({node, parent});
while (stack.isEmpty()):

node, parent = stack.pop();
we found the cycle
if node!=parent and visited[node]:

return true
for neighbor in node.neighbors:

if neighbor:
visited[neig]
stack.append(neighbor)

some other things

Read more here: Detecting Cycles in a Directed Graph

⭐ There’s a second part to this, where we find a cycle in a directed graph. Here’s a nice
visualizer to see that in action: Simple Recursive - Cycle Detection

Problem 4: Friend Circles
⭐ We have a 2D matrix and we want to find friends from that matrix. All the friends who have the
same number row & column wise.
Think of it as nodes connecting with each other, where we’re trying to find the connected ones
to form a friend circle. So we can iterate over the nodes, do a simply DFS, and count the

https://www.baeldung.com/cs/detecting-cycles-in-directed-graph
https://algorithm-visualizer.org/simple-recursive/cycle-detection

BlockTrain.info

76

number of friend circles we have. Super similar to number of islands and other DFS questions -
the only trick is to identify this as a DFS and graph problem.

DFS would look something like this:
private void dfs(int[][] M, int i, boolean[] visited, int n) {

for (int j = 0; j < n; j++) {
if (M[i][j] == 1 && !visited[j]) {
visited[j] = true;
dfs(M, j, visited, n);

}
}

}

We call this DFS function for every unvisited node, mark it visited in the DFS function, and then
increase the circles.
for (int i = 0; i < n; i++) {
if (!visited[i]) {
dfs(M, i, visited, n);
numCircles++;

}
}

Complete code here: Friend circles

Problem 5: Connected components
323. Number of Connected Components in an Undirected Graph
⭐ Super similar to flood fill, number of islands, and other questions where we have to find a
connected network of nodes and return something from that at the end.
Let’s follow our DFS pattern:

- Add the initial node to stack
- Pop from the stack, mark the node visited
- Explore the valid neighbors through some condition
- Repeat the process

Here’s the catch -> we want to call dfs() for every node in the list that we have, so either we can
make a separate function or just do it inside the loop. Here’s how the dfs would look:

https://gist.github.com/aryansingh12/778bcb8d975fb76109bdda862c418683
https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/

BlockTrain.info

77

while(!dfs.empty()){
int current = dfs.top(); dfs.pop();
visited[current] = true;
for(int neighbour : adjList[current]){

if(!visited[neighbour]) dfs.push(neighbour);
}

}

We iterate over the list of nodes and call this for every node -> marking all the connected
components visited and increasing the counter once for every new node. Here’s how the
complete code looks like.
for(int i = 0; i < n; i++){

if(!visited[i]){
ans++;
dfs.push(i);
DFS(node);

}
}

⭐ Understand the underlying principles, visualize it in your head, and explain it to your mind
before moving forward. A lot of times, you won’t have to code the whole thing in an interview,
but explain, explain, explain! They want to know your approach and understanding before
knowing how you write code.

Algorithms
⭐ There are other, advanced graph algorithms which are good to know and often overlap with
some shortest path questions. So here are some links you can refer to, when studying about
these:

● Kruskal's Algorithm
● Detect Cycle In Graph
● Union Find Algorithm In Graph
● Prim's Algorithm

BlockTrain.info

78

⭐ Missing something? Email us at 0xblocktrain@gmail.com and let us know if you need
additional help! We’re happy to help you with more resources.

Read📚
- A Gentle Introduction To Graph Theory | by Vaidehi Joshi | basecs
- Advanced Graph Algorithms: Dijkstra's and Prim's | by Mikyla Zhang | Medium
- 10 Graph Algorithms Visually Explained | by Vijini Mallawaarachchi

Videos🎥
- Intro: Graph Theory Introduction
- Intro: Lecture 6: Graph Theory and Coloring | Video Lectures | Mathematics for

Computer Science | Electrical Engineering and Computer Science
- Intro: Lecture 12: Graphs and Networks | Video Lectures | Computational Science and

Engineering I | Mathematics
- Dijkstra's Shortest Path Algorithm | Graph Theory

Questions🤔❓
- Employee Importance
- Redundant Connection
- 130 Surrounded Regions
- 721. Accounts Merge
- Leetcode-Clone Graph
- Word Search
- Network Delay Time
- Is Graph Bipartite?
- 802. Find Eventual Safe States
- 841. Keys and Rooms
- Leetcode : Possible Bipartition
- [947] Most Stones Removed with Same Row or Column
- 994. Rotting Oranges
- 787. Cheapest Flights Within K Stops
- 1319. Number of Operations to Make Network Connected

mailto:30dayscoding@gmail.com
https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://mikyla-c-zhang.medium.com/advanced-graph-algorithms-dijkstras-and-prim-s-aad8eef84b23
https://towardsdatascience.com/10-graph-algorithms-visually-explained-e57faa1336f3
https://youtu.be/eQA-m22wjTQ?list=PLDV1Zeh2NRsDGO4--qE8yH72HFL1Km93P
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/lecture-6-graph-theory-and-coloring/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/lecture-6-graph-theory-and-coloring/
https://ocw.mit.edu/courses/mathematics/18-085-computational-science-and-engineering-i-fall-2008/video-lectures/lecture-12-graphs-and-networks/
https://ocw.mit.edu/courses/mathematics/18-085-computational-science-and-engineering-i-fall-2008/video-lectures/lecture-12-graphs-and-networks/
https://youtu.be/pSqmAO-m7Lk
https://leetcode.com/problems/employee-importance/
https://leetcode.com/problems/redundant-connection/
https://leetcode.com/problems/surrounded-regions/
https://leetcode.com/problems/accounts-merge/
https://leetcode.com/problems/clone-graph/
https://leetcode.com/problems/word-search/
https://leetcode.com/problems/network-delay-time/
https://leetcode.com/problems/is-graph-bipartite/
https://leetcode.com/problems/find-eventual-safe-states/
https://leetcode.com/problems/keys-and-rooms/
https://leetcode.com/problems/possible-bipartition/
https://leetcode.com/problems/most-stones-removed-with-same-row-or-column/
https://leetcode.com/problems/rotting-oranges/
https://leetcode.com/problems/cheapest-flights-within-k-stops/
https://leetcode.com/problems/number-of-operations-to-make-network-connected/

BlockTrain.info

79

⭐ Here are some famous topics and algorithms under graph theory, which are exciting to know
about but aren’t necessarily used directly in coding interviews:

- Prim’s algorithm
- Kosaraju’s algorithm
- Bellman ford
- Floyd Warshall

There are also other algorithms which are discussed in the section below here.

Topological Sorting
Introduction
⭐ The name suggests sorting, so it probably should be :P. Here’s the definition: “topological
ordering of a directed graph is a linear ordering of its vertices such that for every directed edge
uv from vertex u to vertex v, u comes before v in the ordering”
In simple words, we need to sort then in such a way that that the ‘prerequisite’ comes before all
the others and we have a directed structure from one node to another.

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Directed_graph

BlockTrain.info

80

Let’s understand this with CLASSES at your school/college/university. You have to take
calculus before taking advanced mathematics and you have to take basic programming before
moving forward -> that’s topological sorting. You can make your class schedule using this
algorithm.

Here’s a beautiful way to see topological sorting in action: Branch and Bound - Topological Sort

Let’s convert this to code, step by step.
Firstly, we want to cover all the nodes so we can use a stack or queue. It’s a DAG and we’re
concerned about the depth, so let’s use a stack. Queue is also an option here.
We have an array given to us, let’s iterate over that -> go as deep as possible and add that to
our set. We want to go to the last node and begin from there. Here’s the algorithm from
Wikipedia.

L ← Empty list that will contain the sorted elementsS ← Set of all nodes with no incoming edge
while S is not empty doremove a node n from Sadd n to Lfor each node m with an edge e from n to m doremove edge e from the graphif m has no other incoming edges theninsert m into S
if graph has edges thenreturn error (graph has at least one cycle)elsereturn L (a topologically sorted order)

Removing edge means marking it visited and never coming back to it again. So here’s what the
first thing looks like.

for(int i=0; i < nodes.length; i++){
if(visited[i] == false){

visited[i] = true;
toposort(i, visited, adj, s);

}

https://algorithm-visualizer.org/branch-and-bound/topological-sort
https://en.wikipedia.org/wiki/Topological_sorting

BlockTrain.info

81

}
// Print the stack here -> it’s sorted!

We have to define toposort() which does the same thing -> takes the pointer to the very last
node, adds it to the stack, marks them visited along the way, and then eventually fills up the
array. Here’s the toposort function:

toposort(int i, boolean visited[], adj[][], Stack<> stack){
for(int x : adj.get(i)){

if(visited[x] == false){
visited[x] = true;
toposort(x, visited, adj, stack);

}
}
stack.push(i);

}

After filling up the stack, we print out all the items from that in a sorted form. Here’s a nice
explanation video by WIlliam Fiset on topo sort: Topological Sort Algorithm | Graph Theory

Here’s another version of the code for topological sorting: Python Topological Sorting,
[Topological Sort Algorithm]

Now that we know the basics of topological sorting, let’s understand it more through a question
-> the most popular one: course schedule.

Problem 1: Course Schedule
207. Course Schedule
⭐ Course schedule is an amazing problem and it resonates with every student, although no one
likes to solve it. It’s far from reality, because we all want to sort courses by difficulty :P
(everyone loves easy courses)

Onto the question -> We have the number of courses and an array of prerequisites -> the
prerequisites can be multiple for some classes. Like you might have to take CS101 for 120 as
well as 130. So we need to take that into consideration as well.

https://youtu.be/eL-KzMXSXXI
https://github.com/aryansingh12/All-About-Python/blob/master/50_coding_ques/order-topological-sort.py
https://gist.github.com/alexlaurence/ebf3db07ae1652abed0e5fc74c0da6dd
https://leetcode.com/problems/course-schedule/

BlockTrain.info

82

Firstly, let’s transform the prerequisites so that we can use them. We transform the 2D matrix
into a graph-like thing where we have a key -> value thing for prerequisite -> course.

ArrayList[] graph = new ArrayList[numCourses];
for(int i=0;i<numCourses;i++)

graph[i] = new ArrayList();
boolean[] visited = new boolean[numCourses];
for(int i=0; i<prerequisites.length;i++){

graph[prerequisites[i][1]].add(prerequisites[i][0]);
}

We want to call DFS on all the nodes as we go and mark them visited once we cover them ->
basics of topological sorting.
for(int i=0; i<numCourses; i++){

if(!dfs(graph,visited,i))
return false;

}
return true;

Onto writing the dfs() function where we visit every node from that one node, mark the
neighbors visited and keep a track of the eventual course structure -> whether we can take the
courses or not.
The return type is a little different as we’re returning true or false based on that particular node.
So we visited the courses, store them in a visited array and return true if we’re able to take the
courses from there. We do this for all other nodes until we find a negative result. If we don’t, we
return true at the end.

private boolean dfs(ArrayList[] graph, boolean[] visited, int course){
if we’ve already taken the course, return false
if(visited[course])

return false;
else

visited[course] = true;;
for(int i=0; i<graph[course].size();i++){

BlockTrain.info

83

call DFS for the course now -> .get(i)
if(!dfs(graph,visited,(int)graph[course].get(i)))

return false;
}
mark it visited or taken
visited[course] = false;
return true;

}

Resources
- Topological Sort Graph | Leetcode 207 | Course Schedule
- [LeetCode]Course Schedule. May 30-Day Challenge | by Yinfang
- Course Schedule | Deadlock detection | Graph coloring | Leetcode #207
- Leetcode - Course Schedule (Python)

Read📚
- Definition: Wikipedia
- Visualizer: Branch and Bound - Topological Sort

Videos🎥
- Topological Sort Algorithm | Graph Theory
- Topological Sort | Kahn's Algorithm | Graph Theory

Questions ❓
- Topological Sort
- Leetcode : Find the Town Judge
- LeetCode 210. Course Schedule II

https://youtu.be/rG2-_lgcZzo
https://medium.com/@yzhua3/leetcode-course-schedule-642d91dbd425
https://youtu.be/kXy0ABd1vwo
https://youtu.be/yPldqMtg-So
https://en.wikipedia.org/wiki/Topological_sorting
https://algorithm-visualizer.org/branch-and-bound/topological-sort
https://youtu.be/eL-KzMXSXXI
https://youtu.be/cIBFEhD77b4
https://leetcode.com/tag/topological-sort/
https://leetcode.com/problems/find-the-town-judge/
https://leetcode.com/problems/course-schedule-ii/

BlockTrain.info

84

Greedy Algorithms
Introduction
⭐ Algorithms where we make choices at every step because of a reason (optimal choice) are
called greedy algorithms. Like returning the max everytime in an array, or maybe returning the
cheapest food near you from a list of restaurants with multiple menu items. Greedy answers can
definitely work, but it might not be the most optimal thing to do wrt time and space complexity.

For instance, you have a tree and you want to find the maximum path sum of that tree. The
correct solution to that would be to explore all different cases, add memoization to the logic, and
finally return the max path sum from that. However, if you try to use a greedy approach right
from the top, you would end up making the wrong mistake of choosing the maximum element at
every level - which would be wrong. So we have to be smart about using it at the right time.
Here are some sub topics which will help you understand things in a better way.

A lot of questions can be solved by sorting the input and then adding some logic to that. Let’s
discuss a question: meeting rooms. We have the starting and ending times for a room
throughout the day. And we want to check how many people can be there at the maximum time
or something -> so we sort the times, arrange the people in terms of the time and then find the
maximum while iterating through the instances. Let’s discuss some problems on similar
concepts.

Problem 1: Merge intervals
56 Merge Intervals
⭐ Another problem which can be solved fairly quickly after sorting is this one. Instead of
comparing all the possible cases, if we just sort the inputs and then compare the last and first
elements and then combine them -> it’ll be much easier.
Solution: A simple Java solution

Problem 2: Meeting rooms
⭐ We have a 2D array of the incoming and outgoing times for a person inside a room. We want
to return the number of meeting rooms we would need to accommodate them.

https://leetcode.com/problems/merge-intervals/
https://leetcode.com/problems/merge-intervals/discuss/21222/A-simple-Java-solution

BlockTrain.info

85

So for eg: [[2,7], [5,7], [3,4]]. We need 2 rooms here, one for the 2,7 one and the other one for
the next 2 people who come and go.

Brute force looks annoying here, we iterate over, find all possible cases, memoize something,
and then finally return the optimal answer. We want the minimum rooms, so we condition
something on that, and return that.

What if we change the game a little here, what if we track every time someone comes in and
goes (after sorting). So if we sort this array -> we would see someone comes at 2,3,5 and
someone leaves at 4,7,7.

What if -> we turn the people anonymous and every time someone comes in, we +1 the
counter, and everytime someone leaves the room, we -1 the counter? Try it. While doing this,
we store the max value of the counter and eventually return that max value. That’s the
maximum number of rooms we need.

def meetingRooms(start, ends):
rearrange_rooms = [(s,1) for s in start] + [(s,-1) for s in ends]
rearrange_rooms.sort()
rooms=0
max_rooms=0
iterate and add value to room
for pos, value in rearrange_rooms:

rooms += value
store the max rooms
max_rooms = max(rooms, max_rooms)

return max_rooms

You can also manually +1 and -1 for the incoming and outgoing people, here we just transform
that into a big array with these elements: (incoming_time, +1) or (outgoing_time, -1)
⭐ See how sorting + greedy helps solve some amazing problems with ease. Always think of
sorting arrays if they can simplify the problems. The time complexity is NlogN for sorting which
often helps in optimization.

BlockTrain.info

86

Problem 3: Largest number
Leetcode-Largest Number
We have an array of nums, we want to make the largest number from those elements.

public String largestNumber(int[] nums) {
// Get input integers as strings.
String[] asStrs = new String[nums.length];
for (int i = 0; i < nums.length; i++) {

asStrs[i] = String.valueOf(nums[i]);
}
// Sort strings according to a custom comparator.
Arrays.sort(asStrs, new LargerNumberComparator());
// If, after being sorted, the largest number is `0`, the entire number
// is zero.
if (asStrs[0].equals("0")) {

return "0";
}
// Build the largest number from a sorted array.
String largestNumberStr = new String();
for (String numAsStr : asStrs) {

largestNumberStr += numAsStr;
}
return largestNumberStr;

}

Priority Queue
⭐ Priority Queue is a big part of greedy algorithms -> tons of questions revolve around priority
queues and it’s important to understand how we can use them. They support insert, delete,
getMax(), and other operations in logN time -> so instead of doing extra work with getting the
max or min, we can use heaps and make it faster.

https://leetcode.com/problems/largest-number/

BlockTrain.info

87

Here’s the formal definition:
It’s a heap based structure where we can sort and store elements in a min/max fashion so that
every time we need a new element -> we just pop it off from the top instead of sorting and
computing the whole thing again.
What is a heap? It’s a tree like structure with these conditions:

- Complete binary tree
- Min heap: Every node should be smaller than the ones below it. So the element at the

top (root node) will be the min one.
- Max heap: Every node should be bigger than the ones below it. So the element at the

top (root node) will be the max one.

⭐ Priority queues are also heavily used in graph theory -> where we want optimal paths or
cheaper things. For eg: Cheap tickets from point A to B. We can store the edges in a priority
queue as we iterate and then return the top path (with some other conditions).
Djikstra’s algorithm is a common one, where priority queue is used as the main data structure.
It’s used to find shortest paths between nodes in a graph. Imagine an airplane flight network
where we want the cheapest flight path. There are multiple short path algorithms which come
under the banner of graph theory, where most of them have to do something with priority
queues. So it boils down to the fundamental knowledge of BFS/DFS and how to add some
tweaks for short paths, priority queue and other things.

Problem 4: Top k elements
https://leetcode.com/problems/top-k-frequent-elements/
⭐ We have an array full of repeating elements and we want to return the maximum frequency
ones - in a row. So if we have [1,1,1,3,3,5] and k=3 -> then we return 1,3,5.

https://leetcode.com/problems/top-k-frequent-elements/

BlockTrain.info

88

One way to do this is to count the numbers using a hashmap. Use the map something like this:
map[element] = count. Sort the map using the keys, iterate over the array, and then iterate over
it again -> and then return the top K ones.
Python does it short hand format but it basically means this -> sorting(map[values]) and then
we keep a counter thing for it.

counter = Counter(nums) # count the elements
sortedcounter = sorted(counter, key=lambda key: (counter[key], key))
sort the array
count = 1
res = []
for i in range(len(sortedcounter)-1, -1,-1): # iterate from the back

res.append(sortedcounter[i])
return when the counter reaches k
if count == k:

return res
count += 1

return res if less than k
return res

Bucket sort: “Bucket sort, or bin sort, is a sorting algorithm that works by distributing the
elements of an array into a number of buckets.”
We just iterate over the frequency map and add our items to the buckets for every frequency.
Notice here, how we have buckets for frequency and every bucket is an array list where we add
the key. So it’s the other way round. Eventually, the bucket would look like this:
3 -> 1...more elements with frequency 1
2 -> 2… more elements with frequency 2

for (int key : frequencyMap.keySet()) {
int frequency = frequencyMap.get(key);
if (bucket[frequency] == null) {

bucket[frequency] = new ArrayList<>();
}
bucket[frequency].add(key);

}

Once you’ve added the items, we iterate from the back and return the k elements.

BlockTrain.info

89

for (int pos = bucket.length - 1; pos >= 0 && res.size() < k; pos--) {
if (bucket[pos] != null) {

res.addAll(bucket[pos]);
}

}

We can also use a priority queue or a min heap and add/store elements in there, which does the
sorting for us. Remember, whenever there’s something to do with min/max or return a list of
elements in some sort of order -> priority queue can be very useful. Here’s how the code would
look like for a heap

Make sure to understand the solution, make a small document for yourself, and your notes
there. If you have any additional questions, email us at 0xblocktrain@gmail.com.

public List<Integer> topKFrequent(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
for(int n: nums){

map.put(n, map.getOrDefault(n,0)+1);
}
PriorityQueue<Map.Entry<Integer, Integer>> minHeap =

new PriorityQueue<>((a, b) -> Integer.compare(a.getValue(),
b.getValue()));

for(Map.Entry<Integer,Integer> entry: map.entrySet()){
minHeap.add(entry);
if (minHeap.size() > k) minHeap.poll();

}
List<Integer> res = new ArrayList<>();
while(res.size()<k){

Map.Entry<Integer, Integer> entry = minHeap.poll();
res.add(entry.getKey());

}
return res;

}

Problem 5: Coin calculator
Part I

mailto:30dayscoding@gmail.com

BlockTrain.info

90

⭐ Imagine you have to pay some amount for your food, let’s say $75 and you have a set of
denominations with you -> {1,2,10,25}. What’s the minimum number of coins you would use to
fulfill that $75 order?
Brute force would probably lead us to trying every possible way and then returning the minimum
number of coins. We could memorize repetitive things, and hence use dynamic programming to
solve the question. Can we do something better?
We can use a greedy approach here, to simply use the maximum denomination first, so starting
off with $25 notes and using those until we can’t and then using the others.

Part II
Here’s the catch, for example you have {$13, $25} bills and the total bill is $26. What do you do?
If you use a greedy approach, you would end up using the $25 and then leave the $1 behind.
You gotta pay that, or wash the dishes. Here’s where we would need to explore other options
and the backtracking hits us. Make sure you see both the parts here, and not just one.

Read
- Non Overlapping Intervals. This week I encountered many interval… | by Osgood

Gunawan | The Startup
- When to use Greedy Algorithms in Problem Solving

Videos
- Interval Scheduling Maximization (Proof w/ Exchange Argument)
- 3. Greedy Method - Introduction

Questions
- Leetcode-Largest Number
- Graph Coloring Problem – Techie Delight
- 435 Non-overlapping Intervals
- 787. Cheapest Flights Within K Stops
- Greedy

https://medium.com/swlh/non-overlapping-intervals-f0bce2dfc617
https://medium.com/swlh/non-overlapping-intervals-f0bce2dfc617
https://medium.com/javarevisited/when-to-use-greedy-algorithms-in-problem-solving-a081d5867186
https://youtu.be/hVhOeaONg1Y
https://youtu.be/ARvQcqJ_-NY
https://leetcode.com/problems/largest-number/
https://www.techiedelight.com/greedy-coloring-graph/
https://leetcode.com/problems/non-overlapping-intervals/
https://leetcode.com/problems/cheapest-flights-within-k-stops/
https://leetcode.com/tag/greedy/

BlockTrain.info

91

Tries
Introduction
⭐ Tries are also a type of prefix trees which are tree-like structures to store strings.
Let's start with a question: You have 2 strings and we want to find the common letters in it.
The first brute force way is to iterate over the first string, add the letters to a set -> then iterate
over the next string and see all the elements that are in the set. You could also do things like
string2.contains(char) -> but it’s the same thing wrt time complexity.

We can insert and find strings in O(L) time, where L is the length of the string. Another use case
can be to print the characters in order.

Problem 1: Implement Trie
Leetcode 208. Implement Trie (Prefix Tree)
⭐ We’re going to implement the trie here and understand how it works. A lot of times -> you
would have to implement this on the side and then use it in a question, so we’re going to
discuss a question as well. At the same time, the question could also be “search for a letter” ->
where we can just use the search function.

First, we want to decide how the Node class looks like. Every node needs to hold a map of the
children and a boolean which tells if it is the last node (leaf node / last character):
class TrieNode:

https://leetcode.com/problems/implement-trie-prefix-tree/

BlockTrain.info

92

def __init__(self):
self.children = {}
self.isLast = False

We need the Trie class now. The major functions are insert, search, startsWith -> where we can
also add more -> delete, findChar, etc. Let’s begin the insert function.
Here’s a great article before moving forward: Trying to Understand Tries. In every installment of
this series… | by Vaidehi Joshi | basecs

Insert
⭐ We want to insert a character at the very end of the trie. The first part of that is iterating down
and finding the last character (through the isLast field of TrieNode) and then add the character
to the map.
The letter which we’ll add will be a TrieNode() and not just a character. Every node is a
TrieNode -> which has those 2 things.
Here’s how we do it

- Iterate over the word - every letter
- Iterating forward -> node = node.children[letter]
- We add the letter there -> node.children[letter] = TrieNode()

def insert(self, word):
node = self.root
for letter in word:

if letter not in node.children:
node.children[letter] = TrieNode()

node = node.children[letter]
node.isLast = True

Searching
⭐ We want to search for a character or stream of characters in a string.
Here are the steps:

- Iterate over the letters

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014
https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

BlockTrain.info

93

- If the letter is not in node.children -> return false. Remember, node.children is a
dictionary of the letter mappings for the children, -> so it should be there.

- Iterating forward -> node = node.children[letter]
- If we reach the end without returning false, we return if it’s the last element or not ->

using the isLast class field.

def search(self, word):
node = self.root
for letter in word:

if letter not in node.children:
return False

node = node.children[letter]
return node.isLast

Starts With
⭐ We want to return true if the string (prefix) is at the start of a word. We can simply use the
class field to our advantage and find the right answer here.
Here are the steps

- Iterate over the letters
- If the letter is not in node.children -> return false. Remember, node.children is a

dictionary of the letter mappings for the children, -> so it should be there.
- Iterating forward -> node = node.children[letter]

def startsWith(self, prefix):
node = self.root
for letter in prefix:

if letter not in node.children:
return False

node = node.children[letter]
return True

Resources📚
- Trie Data Structure - Beau teaches JavaScript
- Trie Data Structure Implementation (LeetCode)

https://youtu.be/7XmS8McW_1U
https://youtu.be/giiaIofn31A

BlockTrain.info

94

Questions ❓
- Leetcode 208. Implement Trie (Prefix Tree)
- Leetcode 139. Word Break
- Leetcode Word Break II
- Leetcode 212. Word Search II
- Leetcode 1032 Stream of Characters
- Leetcode 421 Maximum Xor of Two Numbers in an Array

Additional Topics
⭐ These are some random mixed questions, which will teach you something new to learn. We
should never solve a question expecting it to come in our interview (even something similar), but
to learn something new from it!
Remember, we’re not trying to solve hundreds or thousands of questions, but to

- Understand the concepts
- Build problem solving skills
- Enjoy our time with questions
- Become a better developer

Kadane’s algorithm
Wikipedia: Maximum subarray problem
⭐ It’s used to solve the maximum subarray problem and the concept is to keep a track of the
sum as you go -> and change it to 0 when it’s negative. (so you’re positive at the very least). An
edge case is all negative numbers -> where you return the min of those.

https://leetcode.com/problems/implement-trie-prefix-tree/
https://leetcode.com/problems/word-break/
https://leetcode.com/problems/word-break-ii/
https://leetcode.com/problems/word-search-ii/
https://leetcode.com/problems/stream-of-characters/
https://leetcode.com/problems/maximum-xor-of-two-numbers-in-an-array/
https://en.wikipedia.org/wiki/Maximum_subarray_problem

BlockTrain.info

95

Djikstra’s algorithm
⭐ Djikstra’s algorithm is a shortest path algorithm, where priority queue is used as the main data
structure. Imagine an airplane flight network where we want the cheapest flight path from point
A to B. There’s also the shortest-path-tree which basically returns a tree with lowest cost from
one node to another. So instead of just a short path from A to B, we do it for all the nodes in the
graph.
Here’s a nice video about this algorithm: Dijkstra's Algorithm - Computerphile

Let’s understand the algorithm:
The basic understanding is that we want to visit every node, mark them visited, calculate the
cost until then, and finally return the shortest path. We can simply do a BFS (shortest path!) and
use a Queue for that.
Here’s the catch -> if we use a simple queue, then it would be hard to get the minimum element
when we pop it off. So instead, we can use a priority queue -> where every time we pop
something off, we get the minimum element.
Following the BFS principles, we add the node to the queue, pop it off, explore it’s neighbors +
do some calculations for the route + mark them visited, and then repeat. Here’s a nice
visualization of the dijkstra's algorithm: Greedy - Dijkstra's Shortest Path

function Dijkstra(Graph, source):dist[source] ← 0 // Initialization
create vertex priority queue Q
for each vertex v in Graph:if v ≠ source

https://youtu.be/GazC3A4OQTE
https://algorithm-visualizer.org/greedy/dijkstras-shortest-path

BlockTrain.info

96

dist[v] ← INFINITY // Unknown distance from source to vprev[v] ← UNDEFINED // Predecessor of v
Q.add_with_priority(v, dist[v])

while Q is not empty: // The main loopu ← Q.extract_min() // Remove and return bestvertex for each neighbor v of u: // only v that are still in Qalt ← dist[u] + length(u, v)if alt < dist[v]dist[v] ← altprev[v] ← uQ.decrease_priority(v, alt)
return dist, prev

Credits: Wiki

AVL Trees
In a normal BST, the elements in the left tree are smaller than the root and the right ones are
bigger than the root. It’s very useful for sorting and we can find the element in O(logN) time.
There’s a catch -> for the given nodes in an array -> there’s a format that we have to follow
which generates multiple binary trees with different structures.

[1,2,3] can generate a binary search tree with the root 3, left child 2, with left child 1 -> this is not
what we wanted and hence we need something better.

AVL trees have a condition, the balance factor has to be in the range {-1,0,1}. So it’s a self
balancing binary search tree.
Resources:

- 10.1 AVL Tree - Insertion and Rotations
- AVL tree - Wikipedia
- AVL Tree Visualization

https://en.wikipedia.org/wiki/Dijkstra's_algorithm
https://www.youtube.com/watch?v=jDM6_TnYIqE
https://en.wikipedia.org/wiki/AVL_tree
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

BlockTrain.info

97

Sorting
Sorting is super important as a concept but not super important in terms of knowing everything
about them. For questions, you can use .sort() to sort whatever you’re using, and rarely you’ll be
asked to actually implement the underlying algorithms. Read more here: Sorting algorithm

Here’s a great visualizer for all sorting algorithms: Sorting Algorithms Animations
Another one more: Brute Force - Bubble

More
If you think we should add a section or anything in general, please write to us at
0xblocktrain@gmail.com

Additional Awesomeness
Questions

 150 Questions: Data structures
 Striver SDE Sheet

Blogs
 How to make a computer science resume
 How to apply for Internships and Jobs
 How to take a technical phone interview
 How to find coding projects + people
 How to learn a language/framework from scratch
 How to revise for Coding Interviews in 15/30/45 days
 Everything about a technical internship
 How to choose the right university (USA)
 How to Get an Internship in MNC | Board Infinity

https://en.wikipedia.org/wiki/Sorting_algorithm
https://www.toptal.com/developers/sorting-algorithms
https://algorithm-visualizer.org/brute-force/bubble-sort
mailto:30dayscoding@gmail.com
https://docs.google.com/document/d/19oevUPa1nGr_k93XrMeXOa1niBqpILbJxucAqCRNihk/edit
https://docs.google.com/document/d/1SM92efk8oDl8nyVw8NHPnbGexTS9W-1gmTEYfEurLWQ/edit
https://docs.google.com/document/d/1Yuf8cd3nHRQI3MZrQQM3v3V4EE-qKHoTWyTttRepCUs/edit
https://docs.google.com/document/d/1Yxpf45SKAvRMv9arxfC7Z1opN_UPvkpC24T7cAdN_xg/edit
https://docs.google.com/document/d/1Ptnk5rjm9cE5Xag-4diVWK9mGvP1FKJvu2_iJZzN4G8/edit#heading=h.iygbkfgsesbu
https://docs.google.com/document/d/1Y3MdDHv8eP8cXPQpHLqw-cMr7g6IQIvxIfaFbOBVMiQ/edit
https://docs.google.com/document/d/1jDeJLAsim8vbc0WSXQwli5gpInv1Uc5JR7ByFUwOS-s/edit
https://docs.google.com/document/d/179id36MfNx9CcW1Q4a5yxDLjvROx-Hyu4-C7O1TVbfI/edit
https://docs.google.com/document/d/1G6WaLtMUXeyMOpsg6uFoWKvhdXZ-6_a-4HI5CQF4ySI/edit
https://docs.google.com/document/d/1T67aRH4JbQo8efteRcrIkma5MXq6QKto33a6JLlle40/edit#heading=h.1lb4dg25lay0
https://blog.boardinfinity.com/how-to-get-an-internship-in-an-mnc/

BlockTrain.info

98

Youtubers
DSA

 WilliamFiset (English)
 IDeserve (English)
 Kevin Naughton Jr. (English)
 Back To Back SWE (English)
 Tech Dose (English)
 Codebix (Hindi)

Competitive coding
 SecondThread
 Errichto's Youtube channel
 William Lin

Websites
 30DaysCoding
 Geeks for geeks
 Leetcode Patterns – Medium
 Interview Question

https://www.youtube.com/user/purpongie
https://www.youtube.com/channel/UCMNkvKnD3mo3Jj9eTwJllWw
https://www.youtube.com/channel/UCKvwPt6BifPP54yzH99ff1g
https://www.youtube.com/channel/UCmJz2DV1a3yfgrR7GqRtUUA
https://www.youtube.com/channel/UCnxhETjJtTPs37hOZ7vQ88g
https://www.youtube.com/channel/UCZJRtZh8O6FKWH49YLapAbQ
https://www.youtube.com/channel/UCXbCohpE9IoVQUD2Ifg1d1g
https://www.youtube.com/channel/UCBr_Fu6q9iHYQCh13jmpbrg
https://www.youtube.com/channel/UCKuDLsO0Wwef53qdHPjbU2Q
https://www.30dayscoding.com
https://www.geeksforgeeks.org
https://medium.com/leetcode-patterns
https://leetcode.com/discuss/

